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Chapter 1

Introduction to the Course

Considerations based on the symmetry of a physical system have always been used in the for-
mulation of general principles and in solving physical problems. Thus, the reader has certainly
already encountered several examples of the use of a symmetry principle. For instance, momen-
tum is conserved for a system that is invariant under spatial translation, and angular momentum
is conserved for a system that is invariant under rotation. More generally, symmetry properties
of a system provide us with two advantages. Firstly, they allow us to establish conservation
laws. Secondly, they introduce selection rules that greatly facilitate the calculation of the phys-
ical quantities of interest. However, it is not always intuitive how to take advantage of the
symmetry properties. Therefore, it is necessary to introduce a formalism that systematically
allows us to construct the link between symmetry properties and physical laws.

Most of the symmetry operations of a physical system are geometric transformations, such
as rotations around a fixed axis, translations, or inversions about a center of symmetry (i.e.,
the transformation of each point x into the point −x, with the point x = 0 being the center of
symmetry). If the application of a geometric transformation results in the transformed object
being indistinguishable from the object in its initial state (same position, same shape, same
orientation), then we say that the system is invariant under the considered transformation.

The set of operations for which a system is invariant forms a group in the mathematical sense.
The mathematical theory of groups, therefore, naturally comes into play in a formal treatment of
symmetry properties in physics. The application of group theory to physics was systematically
developed only in the early 20th century. Among the most important contributions to this field,
we highlight the work of Eugene Paul Wigner, who formalized the application of group theory
to quantum mechanics in his book Group Theory and Its Application to the Quantum Mechanics
of Atomic Spectra in 1931.

The branch of group theory that applies to physics is called group representation theory.
An important distinction within this theory is that between finite groups and infinite groups.
Indeed, some symmetry properties imply a finite number of symmetry operations. For example,
this is the case for the rotational symmetries of molecules. As an example, we introduce the
ammonia molecule in the following paragraph. This molecule is characterized by six rotational
symmetry operations: the identity transformation (a non-transformation is always a symmetry
operation!), two 120-degree rotations, and three mirror operations. On the other hand, some
systems are characterized by an infinite number of symmetry operations. For instance, a sphere
is invariant under a rotation through an arbitrary angle about the center of the sphere as the fixed
point. The theories of finite group representations and infinite group representations present
significant differences that necessitate separate treatment of the two domains.

The primary goal of this course is to introduce the theory of finite group representations and
its application to symmetry properties in molecular and solid-state physics. In the first part,

4



CHAPTER 1. INTRODUCTION TO THE COURSE Quantum Physics II

we will introduce the necessary mathematical concepts. In the second part, we will discuss the
most important finite groups for our purposes and provide examples of the theory’s application.
We will briefly address the rotation-inversion group O(3), which is an infinite group, and its
applications.

1.1 An Example: Vibration Modes of a Molecule

In this section, we will address a physical problem using symmetry criteria. The goal is to show
that symmetry properties can significantly simplify the search for a solution to a problem. At
the current state of our knowledge, we will primarily use symmetry arguments by hand, meaning
relying on intuition, without having a systematic method with a set of rules at our disposal. The
ultimate goal of this course is to lay the foundations for such a method and provide examples
of its application.
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Figure 1.1: Scheme of the NH3 molecule. In the figure, you can also see the numbering of the
four atoms and the choice of the reference frame.

Let’s consider the problem of the vibrations of the ammonia (NH3) molecule. This molecule
consists of three hydrogen atoms arranged in a triangle and one nitrogen atom located on the
vertical axis passing through the center of the triangle (see Figure 1.1). In molecular physics,
it is known that for small displacements from the equilibrium positions, the restoring forces
on the four atoms are proportional to the displacements. The molecule behaves as a system
of coupled harmonic oscillators with 12 degrees of freedom (three spatial coordinates for each
atom). Let’s denote R1, R2, R3, and R4 as the coordinates of the three hydrogen atoms and
the nitrogen atom. If the equilibrium positions of the four atoms are R(0)j , where j = 1, . . . ,4,
then the displacement vectors are given by uj = Rj −R(0)j . Let mH and mN be the masses of
the hydrogen and nitrogen atoms, respectively.

To realistically describe the harmonic modes of the molecules, a precise parametrization of
the elastic constants would be necessary. Such a parametrization should take into account that
the force between two atoms will be characterized by different elastic constants, depending on
whether the displacement direction is along the line connecting them or perpendicular to this
line. In general, we cannot express the harmonic force on an atom as the sum of harmonic
forces exerted by the other atoms because the harmonic constant for the force between two
atoms will be influenced by the presence of the other atoms. However, in the context of this
exercise, we can introduce a highly simplified model without fear, which allows us to familiarize
ourselves with the symmetry properties. We will assume that the system is simply characterized
by two harmonic constants: kHH for the restoring force between two hydrogen atoms and
kNH for the force between a hydrogen atom and the nitrogen atom. We have made a strong
approximation by assuming that the harmonic force between two atoms is isotropic. We will see
that this approximation results in accidental degeneracies, which are not strictly imposed by the
symmetry of the problem. Such degeneracies would not be present in a more realistic model of
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Quantum Physics II CHAPTER 1. INTRODUCTION TO THE COURSE

harmonic forces. In the following notes, we will discuss the problem of accidental degeneracies
in more detail and see that their existence is very rare: their occurrence is almost always a sign
of a poor consideration of the symmetry properties of the system.

Once the masses and elastic constants are given, we can write the potential energy as follows:

V (u1,u2,u3,u4) =
1
2
kHH [(u1 − u2)2 + (u1 − u3)2 + (u2 − u3)2]

+ 1
2
kNH [(u1 − u4)2 + (u2 − u4)2 + (u3 − u4)2] . (1.1)

The force acting on a given particle is obtained from the gradient of this potential with
respect to the corresponding displacement variable:

Fj =mj
∂2uj

∂t2
= − ∂V

∂uj
, (1.2)

which allows us to write the equations of motion for the system:

mH
∂2u1
∂t2

= −kHH(u1 − u2) − kHH(u1 − u3) − kNH(u1 − u4) ,

mH
∂2u2
∂t2

= −kHH(u2 − u1) − kHH(u2 − u3) − kNH(u2 − u4) ,

mH
∂2u3
∂t2

= −kHH(u3 − u1) − kHH(u3 − u2) − kNH(u3 − u4) ,

mN
∂2u4
∂t2

= −kNH(u4 − u1) − kNH(u4 − u2) − kNH(u4 − u3) . (1.3)

In this simplified notation, it is implied that the variables uj(t) depend on time. Such a system
of coupled oscillators is characterized by "normal modes." A normal mode is a specific solution
to the equations (1.3) where the 12 degrees of freedom depend on time according to the same
harmonic law:

uj(t) = u(0)j sin(ωt) . (1.4)

Here, u(0)j is a constant vector. By substituting the solution (1.4) into the set of equations
(1.3), we obtain:

ω2u(0)1 = 1
mH
[kHH(u(0)1 − u(0)2 ) + kHH(u(0)1 − u(0)3 ) + kNH(u(0)1 − u(0)4 )] ,

ω2u(0)2 = 1
mH
[kHH(u(0)2 − u(0)1 ) + kHH(u(0)2 − u(0)3 ) + kNH(u(0)2 − u(0)4 )] ,

ω2u(0)3 = 1
mH
[kHH(u(0)3 − u(0)1 ) + kHH(u(0)3 − u(0)2 ) + kNH(u(0)3 − u(0)4 )] ,

ω2u(0)4 = 1
mN
[kNH(u(0)4 − u(0)1 ) + kNH(u(0)4 − u(0)2 ) + kNH(u(0)4 − u(0)3 )] . (1.5)

Subsequently, to simplify the notation, we will represent u(0)j as simply uj . We can define the
vector in the 12-dimensional space as:

u = (u1; u2; u3; u4) . (1.6)

The system of equations (1.5) can be expressed in the compact form:
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CHAPTER 1. INTRODUCTION TO THE COURSE Quantum Physics II

Au = ω2u , (1.7)

Here, A is the dynamic matrix of the system, obtained straightforwardly from the form (1.5)
of the equation of motion.

Exercise: Write the matrix A.

The equation (1.7) represents an eigenvalue problem. The solutions are obtained by diago-
nalizing the matrix A. The eigenvalues ω2 of A and the corresponding eigenvectors describe the
normal modes of vibration of the molecule. These solutions form a complete set. Any other so-
lution to the problem (1.3) with given initial conditions can be expressed as a linear combination
of the normal modes found.

We note that the matrix A is not symmetric. This is due to the difference between the mass
of hydrogen mH and the mass of nitrogen mN . To have a symmetric matrix, we would need
to rewrite the problem with displacement vectors normalized by the masses, qj = √mjuj , with
j = 1, . . . ,4, mj = mH for the three hydrogens, and mj = mN for nitrogen. We will not adopt
this change of variables since the non-normalized vectors uj provide us with a better intuition of
the molecule’s dynamics. It goes without saying that the matrix A describes the dynamics of a
system of coupled harmonic oscillators, and therefore, all its eigenvalues will be real for physical
reasons, regardless of its lack of symmetry.

The diagonalization of a 12 × 12 matrix cannot be solved analytically in the general case.
One might think, "No problem! We can always solve it numerically with a computer." While this
is true, such an approach can sometimes limit our understanding of the results. Furthermore,
it should be noted that we have chosen an example in classical mechanics, where the number of
degrees of freedom is finite. However, most of the time, we will deal with quantum mechanics,
where the solution space is the Hilbert space of the wave function, a space of infinite dimensions.
In such cases, the computer often cannot assist us, and simplifications must be introduced.

We will now show how symmetry arguments allow us to solve this problem analytically.
Analytical mechanics allows us to make an initial consideration. A rigid body in a vacuum has
six degrees of freedom: three for the translation of the center of mass and three for rotation about
the principal axes of inertia. The molecule can, therefore, move through space at a constant
velocity in an arbitrary direction and rotate about an axis at a constant angular velocity. We
can always envision the molecule as a rigid body and place ourselves in the reference frame
where it is at rest. These six degrees of freedom are characterized by a zero frequency ω = 0.

For example, free translation along the x-axis (see Fig. 1.2(a)) is characterized by the
displacement vector (normalized):

u = 1
2
(1, 0, 0 ; 1, 0, 0 ; 1, 0, 0 ; 1, 0, 0) . (1.8)

Exercise: Verify that the vector (1.8) is an eigenvector of the matrix A with an eigenvalue
of zero.

Free rotation around the z-axis (see Fig. 1.2(b)) is characterized by the displacement vector:

u = 1√
3
(−1

2
,

√
3

2
, 0 ;−1

2
, −
√

3
2
, 0 ; 1, 0, 0 ; 0, 0, 0) . (1.9)

In reality, a finite-length displacement, as illustrated in Fig. 1.2(b), involves a deformation
of the molecule and consequently a potential energy due to elastic forces. Such displacement
cannot be an eigenvector with an eigenvalue of zero for the matrix A in our problem formulation.
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Figure 1.2: (a) Example of translation proper mode of the center of mass. The blue vectors are
the displacement vectors uj . (b) Example of proper modes of free rotation around axis z.

In our problem formulation, the rotation modes are solutions to the eigenvalue problem, always
in the form of a combination of rigid rotation and deformation of the molecule. In this way,
the eigenvectors associated with these solutions have finite eigenvalues that correspond to the
eigenvalues of the associated deformation. For example, we can verify that the displacement
illustrated in Fig. 1.2(b) is composed of a rotation around the z-axis and a deformation in the
radial mode (1.17), which we will describe later. The corresponding eigenvalue is the same as
for this radial mode.

In principle, we can place ourselves in the space orthogonal to the one generated by these six
vectors—three for translation and three for rotation—using the Gram-Schmidt orthogonalization
process. The problem would then be reduced to diagonalizing a 6x6 matrix, which is still a
challenge for an analytical approach.

Suppose we perform an orthogonal transformation of the positions Rj of the four atoms that
make up the molecule. Let’s denote the transformed vector as R′j = SRj . The matrix S is a
three-dimensional orthogonal matrix. The orthogonality condition implies that S−1S = I, and
the elements of S are real. This transformation corresponds to an orthogonal transformation O
of the 12-dimensional displacement vector u, such that u′ = Ou and O−1O = I. For example, a
counterclockwise rotation of 2π/3 about the z-axis is given by:

Ou = (Su3 ; Su1 ; Su2 ; Su4) =
⎛
⎜⎜⎜
⎝

0 0 S 0
S 0 0 0
0 S 0 0
0 0 0 S

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

u1
u2
u3
u4

⎞
⎟⎟⎟
⎠
, (1.10)

where

S =
⎛
⎜⎜
⎝

−1
2 −

√
3

2 0
√

3
2 −1

2 0
0 0 1

⎞
⎟⎟
⎠
. (1.11)

The inverse transformation is u = O−1u′. By substituting it into the equation of motion (1.7),
we obtain:

AO−1u′ = ω2O−1u′ . (1.12)

Let’s multiply by O on the left side. We have:

A′u′ = OAO−1u′ = ω2u′ , (1.13)
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where we’ve defined A′ = OAO−1.
The key point of this approach is to notice that there is a set of orthogonal transformations O

that leave the matrix A unchanged, i.e., A′ = A. For example, the rotation (1.10) superimposes
the molecule on itself. The matrix does not change due to this transformation since it depends
only on the spatial shape of the molecule with the atoms in their equilibrium positions. In other
words, the rotation only involves a permutation of the identical hydrogen atoms and, therefore,
cannot influence the dynamics of the oscillations.

Exercise: Verify that, under transformation (1.10), we have OAO−1 = A.

We can seek all the transformations that have this property of invariance. These transforma-
tions form a set {Oj} where j = 1, . . . ,N , and N is the cardinality of this set. We will call them
symmetry transformations of the system. An analysis of the shape of the molecule allows us
to find all the symmetry transformations by inspection. They are summarized in the following
scheme:

E Identity
C3 Counterclockwise rotation of 2π/3 around the z-axis
C−1

3 Clockwise rotation of 2π/3 around the z-axis
σ1 Mirror plane at x = 0
σ2 Mirror plane at x =

√
3y

σ3 Mirror plane at x = −
√

3y

We will see in the rest of the course that this set of transformations forms a group.

Exercise: Write the corresponding 12 × 12 matrices for the symmetry transformations in
the displacement space. This set of matrices is called a representation of the symmetry group.

Let’s now assume we have found a non-degenerate eigenvector up of the matrix A, such that
Aup = ω2

pup. For each symmetry operation Oj , we have

OjAO
−1
j up = Aup = ω2

pup . (1.14)

Let’s multiply by O−1
j on the left.

A(O−1
j up) = ω2

p(O−1
j up) . (1.15)

So the transformed vector uj
p = O−1

j up is also an eigenvector of the matrix A with the same eigen-
value ω2

p. Since we have assumed that up is a non-degenerate eigenvector, it follows necessarily
that

uj
p = αjup , (1.16)

where αj = ±1. This must hold for all symmetry transformations Oj of the molecule’s symmetry
group. In fact, if there existed an Ol for which this property is not satisfied, we would have a
vector ul

p = O−1
l up that would be linearly independent of up and would simultaneously be an

eigenvector of A with the same eigenvalue, which would contradict our assumption.
The relationship (1.16) is a very important property of non-degenerate eigenvectors. We

can summarize it as follows: if up is a non-degenerate eigenvector of A, then for any symmetry
transformation Oj , we have O−1

j up = ±up. Unfortunately, the reverse is not generally true.
Indeed, suppose we have two non-degenerate eigenvectors u1 and u2 with eigenvalues ω2

1 ≠ ω2
2.

9
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Suppose also that these two vectors behave identically under the symmetry transformations of
the group, i.e., O−1

j u1 = αju1 and O−1
j u2 = βju2, where αj = ±1, βj = ±1, and αj = βj for each

j. In this case, any linear combination of the vectors u1 and u2 would also satisfy the property
(1.16) for each j, but by construction, it would not lead to an eigenvector of A. Therefore, we
can use this property to more easily find the normal modes of vibration of the molecule, but we
must always check that a vector found in this way is indeed an eigenvector of A.

To begin with, let’s consider the vector corresponding to a displacement of the three hydrogen
atoms in the radial direction, while the nitrogen atom remains in its equilibrium position, as
illustrated in Figure 1.3(a). This vector is given by

1 2
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4

(a) (b)
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3
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1 2

3

4
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Figure 1.3: (a) Non-degenerate vibration mode in the z = 0 plane. (b) Non-degenerate vibration
mode with vertical axis oscillation.

up =
1√
3
(−
√

3
2
, −1

2
, 0 ;
√

3
2
, −1

2
, 0 ; 0, 1, 0 ; 0, 0, 0) . (1.17)

Exercise: Verify that for such a displacement, the center of mass of the molecule remains
fixed. This assures us that it is a pure vibrational mode without a translational component.

It can be shown that up is invariant under the symmetry transformations of the molecule,
i.e., σ1, σ2, σ3, C3, C−1

3 , E. So, up is a good candidate to become a proper mode of the system.
To be sure, we need to verify it manually.

Exercise: Verify that the vector (1.17) is invariant under all the symmetry transformations
of the molecule. In particular, check that in the relation (1.16), we have αj = 1 for each j. Verify
that this vector is an eigenvector of the matrix A and derive the corresponding eigenvalue.

Now, let’s consider the displacement along the vertical axis where the nitrogen atom is moved
in the opposite direction to the plane of the three hydrogens, as illustrated in Figure 1.3(b).
This displacement is defined by the vector

up =
1√

3 + µ2
(0, 0, 1 ; 0, 0, 1 ; 0, 0, 1 ; 0, 0, µ) , (1.18)

with µ=3mH/mN (under this condition, the center of mass remains fixed).

Exercise: As with the vector (1.17), verify the property of invariance of (1.18), that αj = 1
for each j, that it is an eigenvector of the matrix A, and derive the corresponding eigenvalue.
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This vector is, therefore, an eigenvector of the system with an eigenvalue different from
that of the vector (1.17), but with exactly the same symmetry (the same αj) as the latter. As
mentioned earlier, a linear combination of these two vectors would still be invariant under all
the symmetry operations of the molecule but would not be an eigenvector of the system. This
is why we need to verify that the found vectors are indeed eigenvectors. For another system, it
might have been more difficult to guess their form, or the proper eigenvectors could have been
linear combinations of these two vectors. Our symmetry considerations have still allowed us to
restrict ourselves to a dimension-2 subspace that can be analytically diagonalized easily. This is
the power of the method.

Now, suppose that an eigenvector up1 of matrix A does not satisfy the property Ojup1 = ±up1
for all symmetry operations of the molecule. We have at least one transformation Ol such that
Olup1 = up2 is a vector linearly independent of up1. We have seen that up2 must still be
an eigenvector of A with the same eigenvalue ω2

p as vector up1. So, we have found another
degenerate eigenvector with the first. We can repeat this procedure by applying all symmetry
operations to the two vectors found in this way. We have two possibilities.

(i) For all symmetry operations, the vectors Ojup1 and Ojup2 lie in the subspace generated
by up1 and up2. In this case, we have defined an invariant subspace of dimension 2, i.e., all
symmetry operations applied to a vector in this subspace result in a vector that belongs to
the same subspace. To search for eigenvectors based on symmetry properties, we can proceed
by analogy with the case of a non-degenerate eigenvector. If we manage to find two linearly
independent vectors that generate an invariant subspace concerning the symmetry operations of
the molecule, these two vectors are good candidates to be degenerate eigenvectors of the matrix
A. We just need to verify that they are.

(ii) There is at least one symmetry operation of the molecule, Ol, such that Olup1 or Olup2
gives a vector up3 that is linearly independent of up1 and up2. This vector is an eigenvector
of matrix A, degenerate with the eigenvectors up1 and up2. We can repeat the reasoning and
distinguish two more cases, depending on whether the 3-dimensional subspace found is invariant
or not. The reverse procedure tells us that, once we have identified an invariant subspace of
dimension 3, any three arbitrary linearly independent eigenvectors in this subspace are good
candidates to be degenerate eigenvectors of the system.

With this procedure, we can decompose the 12-dimensional vector space of the problem
into several subspaces that are invariant under the symmetry operations of the molecule. This
procedure simplifies the task of finding the eigenvectors of the system. In the rest of the course,
we will see that this approach is called the "decomposition into irreducible representations of
the symmetry group of the system." We will learn techniques for performing this decomposition
systematically and finding the eigenvectors of the system under study.

Now, let’s go back to our ammonia molecule. Consider the displacement vector illustrated
in Figure 1.4(a).

up1 =
1√
3
(1

2
,

√
3

2
, 0 ; 1

2
, −
√

3
2
, 0 ; −1, 0, 0 ; 0, 0, 0) , (1.19)

Exercise: Verify that the vector (1.19) is an eigenvector of the matrix A. Verify that it is
not invariant under the symmetry operations of the molecule.

Since this vector is not invariant, we can obtain other degenerate eigenvectors with the first
one by applying the symmetry operations of the molecule. Note that the displacement (1.19) is
only in the z = 0 plane, and all symmetry operations leave this plane invariant. Therefore, the
invariant subspace cannot have more than two dimensions. Without the effort of generating the
second vector by applying a symmetry operation, we can choose any second linearly independent

11
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(a) (b)

1 2

3

4
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4

(a) (b)

Figure 1.4: Proper vibration modes, degenerate in the plane z = 0. Displacements in (a) and (b)
transform under symmetry operations of the molecules like the x and y components of a vector
in the plane.

vector in the plane of the three hydrogens. Let’s choose the vector orthogonal to the first one,
obtained by a π/2 rotation of the vectors u1, u2, u3, as illustrated in Figure 1.4(b).

up2 =
1√
3
(−
√

3
2
,

1
2
, 0 ;
√

3
2
,

1
2
, 0 ; 0, −1, 0 ; 0, 0, 0) , (1.20)

This vector is also an eigenvector of the matrix A. This choice of the two vectors is not arbitrary.
It could be shown that the two vectors (1.19) and (1.20) behave under the symmetry operations
of the molecule as the x and y components of a vector in the z = 0 plane. This means, for
example, that for each j, if Ojup1 = ajup1 + bjup2, then the coefficients aj and bj are the
same as for the rotation Sjx̂ = ajx̂ + bjŷ in three-dimensional space. Later, we will see that,
for molecules and solids, the invariant subspaces can be grouped into a very small number of
categories - the irreducible representations - based on the transformation properties of vectors
under the symmetry operations. We will learn to recognize these categories and derive the base
vectors using systematic methods.

Our journey is nearly complete. We have found the three translational modes, the three
rotational modes, and four proper vibrational modes. We could, through the Gram-Schmidt
orthogonalization procedure, find the two remaining eigenvectors and diagonalize the problem
in the corresponding subspace. The method used above further simplifies the task. Consider
the mode illustrated in Figure 1.5(a) and (c).

up1 =
1√

3 + 2b2 + µ2
(1, 0, b ; 1, 0, −b ; 1, 0, 0 ; −µ, 0, 0) , (1.21)

with b = 3H/L, where H and L are the height and side of the triangle formed by the three
hydrogens. It is an eigenvector of matrix A, and we can verify that it is not invariant under
all symmetry operations. Since we have only two dimensions left, it is clear that the invariant
subspace for this vector is of dimension two. A second vector is illustrated in Figure 1.5(b) and
(d).

up2 =
1√

3 + 6a2 + µ2
(0, 1, a ; 0, 1, a ; 0, 1, −2a ; 0, −µ, 0) , (1.22)

with a = b/
√

3. The constants a and b are chosen so that the two modes do not contain a rigid
rotation of the molecule.

12
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Figure 1.5: Degenerate vibrational eigenmodes. Since these two modes involve deformation in
all three dimensions, we have depicted, for each component, the perspective view (top: (a) and
(b) for both components) and the projected view on the horizontal plane (bottom: (c) and (d)).
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Chapter 2

Mathematical Introduction

The purpose of this chapter is to summarize the algebraic concepts necessary for formulating
the theory of group representations.

2.1 Applications and Binary Operations
Consider two sets, X and Y . A function (or map) f from X to Y is defined such that, for each
element x belonging to X (denoted as x ∈ X), there exists a unique element y in Y associated
with x. We represent this element as y = f(x) and call it the image of x under the function f .
We write it as:

f ∶ X → Y , x↦ y = f(x) . (2.1)

The set X is called the domain of f , and Y is its image. The set of elements in Y , which
are images under f of elements in X, is called the image of X under f and is denoted as f(X).

In general, f(X) is a subset of Y (we write f(X) ⊂ Y ) and is not necessarily identical to Y .
The function f is injective if:

f(x) = f(x′) ⇒ x = x′ . (2.2)

For an injective function, two elements of X cannot have the same image in Y . A function
is surjective if f(X) = Y . For a surjective function, every element of Y is the image of at least
one element of X. A function that is both injective and surjective is called bijective.

Let f be a function from X to Y and g be a function from Y to Z. The composition or
product of these two functions h ∶X → Z is defined as:

h(x) = g (f(x)) . (2.3)

The function h acts from X to Z and is denoted as:

h = g ⋅ f (2.4)

or simply gf when there is no possibility of confusion with other operations. It should be
noted that f ⋅ g is not necessarily well-defined, and when it exists, it is not necessarily equal to
g ⋅ f . For example, consider real-valued functions f(x) = x2 and g(y) = ey. We have:

(g ⋅ f)(x) = g (x2) = ex2 (2.5)

and
(f ⋅ g)(x) = f (ex) = e2x . (2.6)

14
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The composition of functions is associative, meaning that if u, v, and w are functions from
X to Y , Y to Z, and Z to W , respectively, then:

(w ⋅ (v ⋅ u))(x) = ((w ⋅ v) ⋅ u)(x) . (2.7)

For each x ∈X, both sides of this equation correspond to the element:

w(v(u(x))) (2.8)

in W . Therefore, we can write:

(w ⋅ (v ⋅ u))(x) = ((w ⋅ v) ⋅ u)(x) = w ⋅ v ⋅ u . (2.9)

If f ∶ X → Y is a bijective application, then for each element y in Y , there is a unique element
x in X such that f(x) = y, and, naturally, each element x has an image in Y . Therefore, we can
define a bijective application Y → X, y ↦ x such that y = f(x). This application is called the
inverse of f and is denoted by f−1.

Often, we consider applications from a set X to itself. An example is given by real (complex)
functions of a real (complex) variable. We define the identity application as:

e ∶ X →X , x↦ e(x) = x . (2.10)

This application is clearly bijective. If f ∶ X → Y is a bijective application, f−1 exists, and
we have:

(f−1 ⋅ f)(x) = x (2.11)

for each x. Therefore, we write:
f−1 ⋅ f = eX (2.12)

where we denote the identity application of X by eX . Note that we also have:

f ⋅ f−1 = eY (2.13)

Theorem. Let X and Y be two sets containing the same finite number n of elements1. The
following three statements are equivalent:

(i) f ∶ X → Y is surjective,
(ii) f ∶ X → Y is injective,
(iii) f ∶ X → Y is bijective.

Proof:
(i) ⇒ f(X) = Y . Thus, f(X) is composed of n elements, which implies (ii).
(ii) ⇒ f(X) is composed of n elements. It follows that f(X) = Y , which can be reduced to

property (i).
Since (i) and (ii) are each a consequence of the other, (iii) is also true, and the theorem is

thus proved.

The cartesian product X ×Y of two sets X and Y is the set of all ordered pairs (x, y) where
x ∈X and y ∈ Y . If Y =X, then X ×Y is denoted by X2. For example, if the set of real numbers
is denoted by R, then R2 is the set of points in a two-dimensional space (a plane). Similarly, we
can define X3, X4, and so on. The graph of a function f ∶ X → Y is the subset of X × Y that
contains the ordered pairs (x, f(x)).

A relation R between elements of the sets X and Y is defined as a subset of X × Y . We say
that x ∈X is related by R to y ∈ Y if (x, y) ∈ R. In this case, we write xRy.

1Note that this theorem is not valid for two sets with different numbers of elements.
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An equivalence relation - denoted by x ∼ y - is a relation between elements of a set X that
satisfies the following three conditions:

(i) x ∼ x for each x ∈X (reflexivity).
(ii) x ∼ y ⇒ y ∼ x (symmetry).
(iii) x ∼ y and y ∼ z ⇒ x ∼ z (transitivity).
If in a set S we have defined an equivalence relation, then the set of y ∈ S that are equivalent

to x is called the equivalence class of x. We denote this set by:

Cx = {y; y ∼ x} . (2.14)

Naturally, Cx contains the element x.

Theorem. An equivalence relation among the elements of a set S divides the set into disjoint
equivalence classes. This means that

(i) x ∈ Cx,
(ii) x ∼ y ⇔ Cx = Cy ⇔ Cx ∩Cy ≠ ∅

Proof: (i) is evident. We demonstrate (ii) in three steps.
a. x ∼ y ⇒ Cx = Cy. Indeed, if z ∈ Cy, y ∼ z, by transitivity z ∼ x, and thus z ∈ Cx.

Therefore, every element of Cy is also an element of Cx. In the same way, we can demonstrate
that every element of Cx is also an element of Cy. Consequently, Cx = Cy.

b. Cx = Cy ⇒ Cx ∩Cy ≠ ∅ since x ∈ Cx and x ∈Cy, implying Cx ∩Cy ≠ ∅.
c. Cx ∩Cy ≠ ∅ ⇒ x ∼ y. Since Cx ∩Cy ≠ ∅, it contains at least one element, let’s say z. So,

z ∈ Cx and z ∈ Cy, which implies z ∼ x and z ∼ y, from which we deduce that x ∼ y.
These three implications complete the proof of the theorem.

Consider a set S. An internal binary operation on S is a function

f ∶ S × S → S . (2.15)

This means that for each ordered pair (x, y) of elements from S ×S, we assign a unique element
z ∈ S ∶ z = f(x, y). This operation is typically denoted by xy and is called the product of x and
y (in that order). Here are examples of internal binary operations:

(i) Real number multiplication (x, y ∈ R)

(x, y) ↦ xy ∈ R . (2.16)

(ii) Real number addition
(x, y) ↦ x + y . (2.17)

An internal binary operation is called commutative if

xy = yx (2.18)

for all x, y ∈ S. It is called associative if, for all x, y, z ∈ S,

x(yz) = (xy)z . (2.19)

In this case, the parentheses are redundant, and we can represent the result of the operation as
xyz. We also define x2 = xx, x3 = xxx, and so on.

Let S be a set, and R an equivalence relation. The equivalence classes form a set called the
quotient S/R of S by R. The function

S → S/R (2.20)
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defined by
x↦ Cx (2.21)

is surjective since every element of S/R is an equivalence class.
Let S be a set with an internal binary operation. If elements eR and eL exist in S such

that xeR = x and eLx = x for every x ∈ S, then we call these elements the right identity and left
identity, respectively. If eL and eR exist at the same time, then they coincide, and we call this
unique element e. In this case, we have xe = ex = x for every x ∈ S. In fact, from the definition
of eL and eR, we have eLeR = eL = eR. If there were two distinct identity elements e and e′ such
that ex = xe = x and e′x = xe′ = x for every x, then e = e′e = e′. If an element x in S has a right
inverse element x′R such that xx′R = e, we say that x′R is a right inverse of x. Similarly, a left
inverse is defined as an element x′L such that x′Le = e. If x′R and x′L exist at the same time, and
the operation is associative, then x′R = x′L. Indeed,

x′R = ex′R = (x′Lx)x′R = x′L(xx′R) = x′Le = x′L . (2.22)

Therefore, for an associative binary operation, x′ is a right inverse of x if

xx′ = x′x = e . (2.23)

The inverse of x is unique. Indeed, if x′′ was another inverse of x, we would have,

x′′ = x′′e = x′′(xx′) = (x′′x)x′ = ex′ = x′ . (2.24)

We denote the inverse of x as x−1. For example, in the set of real numbers R, 0 and 1 are
respectively the identities (also called neutral elements) for addition and multiplication. The
inverse of x for addition is −x. The inverse for multiplication is 1/x if x ≠ 0.

Theorem. Consider a set S with an associative internal binary operation and an identity
element e. If x and y have inverses x−1 and y−1, then xy has an inverse, and

(xy)−1 = y−1x−1 . (2.25)

Proof:
(xy)(y−1x−1) = x(yy−1)x−1 = xex−1 = xx−1 = e (2.26)

and
(y−1x−1)(xy) = y−1(x−1x)y = y−1ey = y−1y = e (2.27)

2.2 Abstract Group Theory

A set G, equipped with an associative internal binary operation, is called a group if it contains
an identity element (also called a neutral element) and the inverse of each of its elements.

To ensure that G is a group, the following must be verified:

(i) The binary operation is internal, meaning G is closed under this operation,

(ii) The operation is associative,

(iii) There exists an identity element e ∈ G, meaning xe = ex = x for each x ∈ G,

(iv) x ∈ G ⇒ x−1 ∈ G.
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If the binary operation is commutative (i.e., xy = yx for every x, y ∈ G), then the group is called
Abelian. If a group contains n elements, it is said to be of order n. Such a group is called finite.
A group that is not finite is called infinite.

Examples of groups:
(i) The set R of real numbers equipped with addition is an Abelian group. The identity

element is 0, and the inverse of x is −x.

(ii) The set R of real numbers equipped with multiplication is not a group. Indeed, the element
0 has no inverse. However, R−{0} equipped with multiplication is an Abelian group. The
identity element is 1, and the inverse of x is 1/x if x ≠ 0. If C is the set of complex
numbers and Q is the set of rational numbers, then C − {0} and Q − {0} equipped with
multiplication are Abelian groups.

(iii) The set Z of integers equipped with addition is a group. It is not a group when equipped
with multiplication.

(iv) The set {1, −1} equipped with multiplication is a group.

(v) If n is a positive integer and ω = e2πi/n, then the set

{1, ω, ω2, . . . , ωn−1}

equipped with multiplication is a group. The identity element is 1, and the inverse of ωk

(0 ≤ k ≤ n − 1) is ωn−k. Multiplication by eiϕ transforms the complex number

z = reiθ

into
z′ = eiϕz = rei(θ+ϕ) .

This operation is a rotation of all points in the complex plane by an angle ϕ around the
origin. The numbers 1, ω, ω2, . . . , ωn−1 represent rotations by 0, 2π/n, 2(2π/n), . . . , (n −
1)(2π/n) around the origin. The rotations by these angles around a fixed axis thus form
an Abelian group.

Let G be a group with the identity element e and H be a subset of G. We say that H is a
subgroup of G (equipped with the same binary operation as G if

(i) x, y ∈H ⇒ xy ∈H,

(ii) x ∈H ⇒ x−1 ∈H.
Clearly, properties (i) and (ii) imply that e ∈H. Examples of subgroups include:

(i) G is a subgroup of G,

(ii) {e} is a subgroup of G,

(iii) If G = R equipped with addition, then Z is a subgroup of G.

(iv) If G = R − {0} equipped with multiplication, then {1, −1} is a subgroup of G.
Rearrangement Theorem. Let G be a group, and m one of its elements. The mappings

G→ G ∶ x↦mx,

x↦ xm

are bijective.
Proof:
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(i) The mapping x ↦ mx is surjective because for every y ∈ G, m−1y ∈ G, and m(m−1y) = y.
Therefore, y is the image of m−1y under this mapping.

(ii) The mapping x↦mx is injective because mx =mx′ ⇒ m−1mx =m−1mx′ ⇒ x = x′.

The proof is similar for the second mapping. This shows that the sets mG and Gm are rear-
rangements of the elements of G. This theorem allows us to write multiplication tables for finite
groups of small order. The multiplication tables are written as follows:

a b c . . .

a a2 ab ac . . .
b ba b2 bc . . .
c ca cb c2 . . .
⋮ ⋮ ⋮ ⋮

The Rearrangement Theorem states that each row and each column of the table contains all
the elements of the group. No element is repeated on a row or column. Therefore, each row
or column is a rearrangement of the group’s elements. As an example, we can write the only
possible multiplication tables for groups of order two and three.

e a

e e a
a a e

e a b

e e a b
a a b e
b b e a

The Rearrangement Theorem shows that a group of order n is a subgroup of the permutation
group of n objects (Cayley’s theorem). This theorem is very important as it significantly reduces
the number of possibilities for writing the multiplication table of a group. Thanks to this
theorem, we have seen that a group of order 3 is unique, and we could write its multiplication
table without specifying the nature of its elements or the internal operation. More generally, we
can construct multiplication tables using two fundamental criteria. Firstly, the table must satisfy
the Rearrangement Theorem. Secondly, the resulting table must also satisfy the associative
property, i.e., a(bc) = (ab)c, for all elements. In Exercise 2 of the Series, we will see how, based
on these two criteria, we can obtain the only two non-equivalent groups of order 6.

Consider an element a of a finite group G. The set {e, a, a2, . . .} is a subset of G, and it
is therefore finite. Hence, there exist integers m and k, with m > k, such that am = ak or
am−k = an = e, where n = m − k. Thus, it is always possible to find a power of a equal to the
identity element e. Let n be the smallest positive integer for which this property is satisfied.
Then, we have

H = {e, a, a2, . . . , an−1} (2.28)

is a subgroup of G. We say that H is generated by a. A group in the form of H is called a
"cyclic" group. It is clearly abelian.

A "proper" subgroup of G is a subgroup other than {e} and G.
Let G be a group, and let H be one of its proper subgroups. We define an equivalence relation

among the elements of G as follows: if x, y ∈ G and x−1y ∈ H, then x and y are equivalent, and
we write x ∼ y. Let’s prove that this is indeed an equivalence relation.

(i) x ∼ x since x−1x = e ∈H.

(ii) x ∼ y⇒ y ∼ x, since x−1y ∈H ⇒ (x−1y)−1 = y−1x ∈H.

(iii) x ∼ y and y ∼ z ⇒ x ∼ z, since x−1y ∈H and y−1z ∈H ⇒ x−1yy−1z = x−1z ∈H.
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This equivalence relation allows us to divide the elements of G into disjoint classes. If x−1y ∈H,
then y is equal to an element of H multiplied on the left by x. We denote the set constructed
in this way by the symbol

Cx = xH (2.29)

and call it the "left coset." The map H → xH is bijective. Indeed, each element z ∈ xH is the
image of x−1z ∈H, which implies that the map is surjective. It is also injective, as for y, y′ ∈H,
we have xy = xy′ ⇒ y = y′.

We can also define a second equivalence relation x ∼ y if yx−1 ∈ H. We can thus introduce
the concept of a "right coset" (Hx) in the same way.

Theorem. If G is a finite group and H is a proper subgroup of G, then the order of H is a
divisor of the order of G.

Proof: Consider the left cosets of H. They are either all disjoint or identical (since they
are equivalence classes). If there are n distinct left cosets, their union is G. Therefore, if we
denote the orders of G and H as g and h, respectively, then g = nh, and the theorem is proved.
A simple corollary is that a group of prime order has no proper subgroups.

We will now introduce the concept of a "homomorphism." A group G is said to be "homo-
morphic" to a group H if there exists a mapping h ∶ H → G such that

(i) h is surjective, i.e., h(H) = G.

(ii) h(xy) = h(x)h(y) for every pair of elements x, y in H.

Note that if H = {e, x, y, . . .}, the elements h(e), h(x), h(y) in G are not necessarily distinct.
The only necessary condition is that each element of G is the image of at least one element of
H. The mapping h is called a "homomorphism" and is denoted by G = hom H. For example, if
G consists of a single element e′, then h(x) = e′ for all x ∈ H is a homomorphism. The group
G = {1, −1} equipped with multiplication is homomorphic to Z = {. . . , −3, −2, −1, 0, 1, 2, . . .}
equipped with addition, with

h(x) = { 1 if x is even
−1 if x is odd . (2.30)

Theorem. If the group G = {e′, a′, b′, . . .} is homomorphic to H = {e, a, b, . . .} by the
homomorphism h, then

h(e) = e′ (2.31)

and
h(x−1) = h−1(x) , (2.32)

for all x ∈H. Proof:

h(x) = h(xe) = h(x)h(e)
h(x) = h(ex) = h(e)h(x)

where
h(e)h(x) = h(x)h(e) = h(x) (2.33)

which implies that h(e) is the neutral element of G and it is necessarly equal to e′.

h(xx−1) = h(x)h(x−1) = h(e) = e′

h(x−1x) = h(x−1)h(x) = h(e) = e′

which implies
h(x)h(x−1) = h(x−1)h(x) = e′ (2.34)
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and thus h(x−1) is the inverse of h(x) in G.
We also introduce the concept of an "isomorphism." Two groups, H and G, are isomorphic if

there exists a bijective mapping h ∶ H → G such that h(xy) = h(x)h(y) for all x, y ∈H. Clearly,
if G is homomorphic to H and H is homomorphic to G, then H and G are isomorphic.

Theorem. Let G = hom H. The set of all x ∈ H such that h(x) = e′ is a subgroup of H
called the kernel of h. We denote it as ker h.

Proof:

(i) e ∈ ker h since h(e) = e′.

(ii) x ∈ ker h⇒ h(x) = e′ ⇒ h(x−1) = h−1(x) = e′.

(iii) x, y ∈ ker h⇒ h(xy) = h(x)h(y) = e′ ⇒ xy ∈ ker h.

Now, let’s introduce the concept of a "conjugacy class." In a group G, if x and y are elements
of G, we say that y is a conjugate of x if there exists an element u in G such that

y = u−1xu. (2.35)

The relation we have just defined is an equivalence relation. Indeed:

(i) x = e−1xe, meaning x ∼ x,

(ii) y = u−1xu⇒ x = uyu−1 = (u−1)−1yu−1 ⇒ x ∼ y if y ∼ x,

(iii) x ∼ y and y ∼ z ⇒ there exist u and v in G such that x = u−1yu and y = v−1zv. This implies
x = u−1v−1zvu = (vu)−1z(vu) ⇒ x ∼ z.

By this theorem, the conjugation relation divides the elements of the group G into distinct
sets called "conjugacy classes" or simply "classes." In the following, we will use the term "class"
without further qualification to refer to a conjugacy class. We denote the set composed of
elements conjugate to x by the symbol Cx.Please note that in general, Cx is not a group.
Also, notice that the class Ce consists only of the element e: Ce = {e}. The function fu defined
as

fu ∶ Ca → Ca ; x↦ fu(x) = u−1xu (2.36)

with x ∈ Ca and u ∈ G is bijective. Specifically, fu is surjective because if x ∼ a, then x is the
image of uxu−1 ∼ a under fu. It is also injective as fu(x) = fu(x′) ⇒ u−1xu = u−1x′u⇒ x = x′.

Hence, the set u−1Cau is just a rearrangement of Ca. Thus, we can write

u−1Cau = Ca. (2.37)

A subgroup N of a group G is called an "invariant subgroup" or a "normal divisor" of G if it
consists only of entire conjugacy classes. This means that the conjugation of all elements of an
invariant subgroup by an element u of G simply rearranges its elements, i.e.,

u−1Nu = N. (2.38)

We can also write
Nu = uN. (2.39)

Thus, the right and left cosets of an invariant subgroup are equal. Consider now a set F
composed of the right cosets of N :

Cu = Nu. (2.40)
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We now define a composition law for the elements Cu. Consider Cu and Cv and construct
the set containing all products of an element of Cu by an element of Cv. This way, we have
constructed the set CuCv that contains elements of G. Please note that we do not account for
element repetitions: in CuCv, each element is contained only once. If x and y are elements of
N , then a typical element of Cu is xu, and a typical element of CuCv is xuyv. This composition
operation satisfies the property

CuCv = Cuv. (2.41)
In fact,

CuCv = (Nu)(Nv) = (Nu)(Nu−1uv) = (N)(uNu−1)uv
= (N)(Nuv) = (NN)(uv) = Nuv = Cuv, (2.42)

where we could use NN = N thanks to the rearrangement theorem. Equipped with this internal
operation, the set F forms a group. Furthermore, F is homomorphic to G. We call F the
"quotient" of G by N , and write

F = G/N. (2.43)
The group F is also known as the "factor group" of G with respect to the invariant subgroup N .

We now introduce a new type of multiplication between two sets. First, let’s establish the
notation [S] to indicate that if there are repeated elements in the set S, we keep them. For
example, if [S] = {a, a, b, c, c, c}, then S = {a, b, c}.

We have seen that if C is a conjugacy class of a group G and x ∈ G, then x−1Cx = C. Let [R]
be a set of elements of G composed solely of entire classes. By this, we mean that if an element
x ∈ G is contained in [R] n times, then each of its conjugate elements will also be contained in
[R] an equal number of times. Then, for each u ∈ G, we have

u−1[R]u = [R] . (2.44)

Conversely, if [R] satisfies this relation for each u ∈ G, then [R] is composed of entire classes.
This last implication is demonstrated as follows. Suppose that [R] is not composed of entire
classes. Let [R′] be the largest subset of [R] composed of entire classes. Since

u−1[R′]u = [R′], (2.45)

for each u ∈ G, then it follows that the residual set

[R′′] = [R] − [R′] (2.46)

satisfies
u−1[R′′]u = [R′′]. (2.47)

We must now show that the set [R′′] is empty. [R′′] cannot contain e, since e alone constitutes
an entire class. Suppose that [R′′] is not empty, and let x be an element of [R′′]. Since
[R′′] does not contain entire classes, there must be an element y in G, conjugate to x and not
contained in [R′′]" but y = u−1xu for some u ∈ G, and since u−1[R′′]u = [R′′], then y belongs to
[R′′]. We have reached a contradiction. Therefore, we necessarily have

[R′′] = ∅. (2.48)

We can thus formulate the following theorem.
Theorem:: A necessary and sufficient condition for [R] to be composed solely of entire

classes of a group G is that for each u ∈ G,

u−1[R]u = [R]. (2.49)
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Let H be a finite group of order h, and C1 = {e}, C2, . . . , Cµ, . . . , CNC
be its classes. We

indicate by nµ the number of elements in class Cµ and by NC the total number of classes. We
have, therefore,

NC

∑
µ=1

nµ = h. (2.50)

Let X and Y be two subsets of H. We build the products xy of elements x from X and y
from Y , keeping the repeated elements. We define the set

X ⋅ Y = [xy], (2.51)

which contains all these elements. Let Cµ and Cν be two classes of H. We take the product

Cµ ⋅Cν = [uv] , (2.52)

where u and v are respectivly elements of Cµ and Cν . For all x ∈H we have

x−1Cµ ⋅Cνx = [x−1uvx] = [x−1uxx−1vx] = Cµ ⋅Cν . (2.53)

Therefore Cµ ⋅Cν is composed only of entire classes and we can write

Cµ ⋅Cν =
NC

∑
λ=1

nµνλCλ , (2.54)

where nµνλ are non-negative integers. The sum indicates the collection of classes where each
element Cλ is repeated nµνλ times. The coefficients nµνλ satisfy the following symmetry property:

nµνλ = nνµλ . (2.55)

This follows from
Cµ ⋅Cν = Cν ⋅Cµ . (2.56)

In fact,
Cµ ⋅Cν = [uv] = [uvu−1u] = Cν ⋅Cµ , (2.57)

since uvu−1 is a typical element of Cν and, when v traverses the elements of Cν , uvu
−1 traverses

the same elements in a different order. Since C1 = {e}, then

C1 ⋅Cν = Cν (2.58)

which implies
n1νλ = nν1λ = δνλ . (2.59)
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Chapter 3

Theory of Representations

The purpose of this chapter is to formulate the theory of representations of discrete groups.

3.1 Representations
Consider a group H. Now, suppose we have a set G of linear transformations in a vector space,
and this set forms a group under the composition of transformations. Let’s also assume that the
group G is homomorphic to the group H. The group G of linear transformations is then called
a representation of the group H.

We can always express linear transformations in terms of square matrices defined with respect
to a basis for the vector space in question. In this case, the group operation for the group G is
simply matrix multiplication. Let H = {e, x, y, . . .} and G = {Γ(e), Γ(x), Γ(y), . . .}. Since the
mapping Γ is a homomorphism, we have

Γ(xy) = Γ(x)Γ(y) . (3.1)

We call the dimension of a representation the dimension of the vector space in which the repre-
sentation is defined.

Here are some examples of representations:

(i) Γ(x) = 1, the identity transformation, for all x ∈ H. This representation is called the
identity representation or totally symmetric representation.

(ii) Consider the group O(3) of orthogonal transformations in three-dimensional space. This
group consists of all rotations and inversions (thus it is an infinite group). These trans-
formations are represented by 3 × 3 orthogonal matrices. These matrices form a represen-
tation of the group O(3). Another possible representation of the group O(3) is defined
in one-dimensional space. It associates with each element x of the group O(3) the linear
transformation that amounts to multiplying a one-dimensional vector by det(Rx), where
Rx is the 3× 3 matrix related to the three-dimensional representation defined above. This
one-dimensional representation is often called the determinant representation.

(iii) Consider the 12×12 matrices defined by (1.10) and (1.11), as well as in point (iii) of Exercise
Set 1. When an ammonia molecule undergoes a rotation in space, these matrices represent
the effect of such a rotation in the 12-dimensional space of displacement vectors of the
atoms composing the molecule. We have verified in Exercise Set 1 that these matrices
form a group that is homomorphic to the group C3v. These matrices are, therefore, a
representation of the group C3v in a 12-dimensional space. We will see that, in general,
the first step in applying group theory to physics is to find the representation of the
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symmetry group in the vector space of system configurations. For vibrational modes of a
molecule, this is the space generated by displacement vectors. For a quantum system, on
the other hand, it will be the Hilbert space of the quantum states of the system.

Theorem. Let H = {e, x, y, . . .} be a group and Γ(x) a representation of H. The set of
elements in H such that Γ(x) = Γ(e), where Γ(e) is the identity for the representation Γ, forms
an invariant subgroup of H.

Proof: In the group theory review of the previous chapter, we saw that for a homomorphism
Γ, Γ(e) is the identity, and Γ(x−1) = Γ−1(x). The set of elements such that Γ(x) = Γ(e) is an
invariant subgroup because:

(i) It is a group. Γ(x) = Γ(e) and Γ(y) = Γ(e) ⇒ Γ(xy) = Γ(e); it has a neutral element Γ(e)
and, if Γ(x) = Γ(e), then Γ(x−1 = Γ−1(x) = Γ(e).

(ii) The group is invariant because if Γ(x) = Γ(e), then for every u ∈ H, we have Γ(u−1xu) =
Γ(u−1)Γ(e)Γ(u) = Γ(u−1u) = Γ(e).

Definition. The representations Γ(x) and Γ′(x) of a group H = {e, x, y, . . .} are said to be
equivalent if a non-singular transformation S exists, such that

Γ′(x) = S−1Γ(x)S , (3.2)

for each x ∈H.
Theorem. Every representation Γ of a finite-order group H is equivalent to a unitary

representation.
Proof: Let ψ and ϕ be two arbitrary vectors in the vector space of transformations Γ(x)

defined by the representation of H. Define

{ψ∣ϕ} = 1
h
∑
x∈H

⟨Γ(x)ψ∣Γ(x)ϕ⟩ , (3.3)

where ⟨ξ∣η⟩ is the ordinary inner product between vectors ξ and η. It can be verified that the
operation {ψ∣ϕ} is an inner product. Recall that an inner product must satisfy three properties:

(i) ⟨ξ∣η⟩ = ⟨η∣ξ⟩∗ for every ξ, η ,

(ii) ⟨ξ∣aη + bν⟩ = a⟨ξ∣η⟩ + b⟨ξ∣ν⟩ for every ξ, η, ν, with a, b complex ,

(iii) ⟨ξ∣ξ⟩ > 0 for every ξ ≠ 0 .

We can, therefore, build an orthonormal basis {ϵi} according to the inner product ⟨ξ∣η⟩. This
basis provides an orthonormal basis according to the inner product {ψ∣ϕ} (for example, using
the Gram-Schmidt orthogonalization procedure). For each y ∈H, we have

{Γ(y)ψ∣Γ(y)ϕ} = 1
h
∑
x∈H

⟨Γ(x)Γ(y)ψ∣Γ(x)Γ(y)ϕ⟩

= 1
h
∑
x∈H

⟨Γ(xy)ψ∣Γ(xy)ϕ⟩

= {ψ∣ϕ} , (3.4)

where the last equality follows from the rearrangement theorem. This means that Γ(y) (y ∈H)
is a unitary operator according to the inner product {ψ∣ϕ}. We can explicitly construct the
unitary transformation S that relates the representation Γ to a unitary representation according
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to the ordinary inner product. Consider the initial basis {ϵi} and the target basis defined by
ϕi = Sϵi. If

ξ = ∑
i

αiϵi (3.5)

and
η = ∑

i

βiϵi , (3.6)

then

{Sξ∣Sη} = ∑
ij

α∗i βj{Sϵi∣Sϵj}

= ∑
ij

α∗i βj{ϕi∣ϕj}

= ∑
i

α∗i βi

= ⟨ξ∣η⟩ . (3.7)

Therefore

⟨S−1Γ(x)Sψ∣S−1Γ(x)Sϕ⟩ = {Γ(x)Sψ∣Γ(x)Sϕ}
= {Sψ∣Sϕ} = ⟨ψ∣ϕ⟩ . (3.8)

This proves that the representation

Γ′(x) = S−1Γ(x)S (3.9)

is unitary.
A representation Γ of dimension l can be regarded as a set of linear transformations in the

complex vector space Cl formed by complex vectors with l components. If {ϕi} is an orthonormal
basis in Cl, we can express a vector ξ as

ξ =
l

∑
i=1
αiϕi . (3.10)

The operators Γ(x) applied to the basis vectors yield

Γ(x)ϕi =
l

∑
j=1

ϕjΓji(x) , (3.11)

where Γji(x) are the components of an l × l matrix. We can write the transformed vector as

ξ′ = Γ(x)ξ =
l

∑
i=1
αiΓ(x)ϕi =

l

∑
j=1

ϕj

l

∑
i=1
αiΓji(x) . (3.12)

The components of ξ′ = ∑i α
′
iϕi are

α′i =
l

∑
j=1

Γij(x)αj . (3.13)

Let Γ(1), Γ(2), . . . , Γ(n) be representations of a group. We can find a new representation by
constructing matrices of the form:

Γ(x) =
⎛
⎜⎜⎜⎜
⎝

Γ(1)(x) 0 0 . . . 0
0 Γ(2)(x) 0 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . Γ(n)(x)

⎞
⎟⎟⎟⎟
⎠
. (3.14)
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If the representations Γ(i) have dimensions li, then the representation Γ has a dimension

l =
n

∑
i=1
li (3.15)

We symbolically denote the representation Γ as

Γ = Γ(1) ⊕ Γ(2) ⊕ . . .⊕ Γ(n) . (3.16)

Some of the representations among Γ(i) may be identical. If, for example, the representation
Γ(i) appears twice, we indicate it as 2Γ(i). It is clear that there is no limit to the number
of representations that can be constructed. The structure of representation (3.14) is a block
structure, with the i-th block given by the matrix related to the representation Γ(i). It is
crucial to note that for the representation Γ, the homomorphism with the group H only exists
if such a block structure is valid for each element x of the group. If we now perform a unitary
transformation

Γ′(x) = S−1Γ(x)S , (3.17)

where S is a unitary matrix of size l× l, the matrices Γ′(x) will generally no longer have a block
structure, while the representation Γ′ is equivalent to the representation Γ.

If, on the other hand, given a representation Γ, we can find a unitary transformation S such
that the matrices of the new representation Γ′(x) = S−1Γ(x)S all have the same block structure,
we say that we have reduced the representation Γ into a sum of representations. The possibility
of reducing a representation is at the heart of representation theory and its applications in
physics. We will now discuss this concept more rigorously.

Let {ϕi} be an orthonormal basis in the vector space related to a representation Γ. Consider
the vector ξ = ∑l

i=1 αiϕi and study the effect of Γ(x) on ξ. Suppose we find that if αi = 0
for i ≥ l1 + 1, then the application of Γ(x) to ξ produces vectors for which such a property
remains valid, and this holds for all x. We then say that the subspace generated by the vectors
ϕ1, ϕ2, . . . , ϕl1 is invariant under the transformations Γ(x).

Now, let’s imagine having a group H and a representation Γ(x) in an n-dimensional space
Vn. Suppose there exists an invariant proper subspace M in Vn with dimension l < n under all
transformations Γ(x). Let {ϕ1, ϕ2, . . . , ϕl} be a basis for M . The invariance of M implies that

Γ(x)ϕi =
l

∑
j=1

Γji(x)ϕj , i = 1, 2, . . . , l . (3.18)

We can construct a basis for the vector space Vn that contains the vectors ϕ1, ϕ2, . . . , ϕl as a
subset. Such a basis includes the vectors ϕ1, ϕ2, . . . , ϕl and the remaining n − l basis vectors
ϕl+1, ϕl+2, . . . , ϕn. We have

Γ(x)ϕi =
l

∑
j=1

Γji(x)ϕj +
n

∑
j=l+1

Γji(x)ϕj , i = l + 1, l + 2, . . . , n . (3.19)

This shows that, in such a basis, the matrices of the representation have the form:

Γ(x) = ( P Q
0 T

) , (3.20)

Where P and T are square matrices with dimensions l× l and (n− l)×(n− l) respectively. If such
an invariant subspace M can be found, we say that the representation Γ is reducible. In other
words, a representation Γ defined in an n-dimensional vector space Vn is reducible if there exists
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a non-empty proper eigenspace of Vn that is invariant under all group transformations. If such
a subspace does not exist, the representation Γ is called irreducible. A representation is called
completely reducible if, for every non-empty proper eigenspace M invariant under group transfor-
mations, the orthogonal complement N of M is also invariant. Clearly, a unitary representation
of a group that is reducible is automatically also completely reducible. Unitary transformations
Γ(x), by definition, preserve orthogonality. Since the subspaces with bases ϕ1, ϕ2, . . . , ϕl and
ϕl+1, ϕl+2, . . . , ϕn are orthogonal, they will remain so after applying the transformations Γ(x).
In expression (3.20), the block Q is identically zero. We have seen that for finite groups, each
representation is equivalent to a unitary representation. Therefore, for finite groups, there is
no need to distinguish between the concepts of reducibility and complete reducibility. So, from
now on, when we say reducible, we will imply a completely reducible representation.

Now, let’s develop criteria for establishing the irreducibility of a representation. These
criteria take the form of two Schur’s Lemmas.

Schur’s Lemma 1. A transformation that commutes with all the transformations of an
irreducible representation of a group is a constant transformation, i.e., a multiple of the identity.

Proof: Let H be the group, and x be one of its elements. Let Γ(x) be the transformation
associated with x in the irreducible representation Γ. Let M be a transformation in the domain
space of Γ. We need to show that if

MΓ(x) = Γ(x)M (3.21)

for all x ∈H, then M is a multiple of the identity operator. If M = 0, the lemma is proved.
Suppose M ≠ 0. Let S be the domain vector space of Γ. If ξ ∈ S, the set {Mξ} forms a vector
space, which we denote as M(S). In general, M(S) is a subspace of S. From equation (3.21),
we deduce that

MΓ(x)ξ = Γ(x)Mξ (3.22)

for each x. Therefore, Γ(x) applied to Mξ results in an element of M(S). This means that
M(S) is invariant under Γ. Since Γ is irreducible, M(S) cannot be a proper subspace of S.
Moreover, since M ≠ 0, M(S) cannot be the set {0} containing only the zero vector. It follows
that M(S) = S. This result shows that the set of vectors ξ for which Mξ = 0 contains only
the zero vector. Therefore, M is nonsingular. Let λm be an eigenvalue of M , and ϕm its
corresponding eigenvector. Define M ′ = M − λm1. The operator M ′ satisfies condition (3.21)
for each x, and if M ′ ≠ 0, then M ′(S) is an invariant subspace of S under Γ. However, M ′(S)
does not contain the vectors generated by ϕm. That would imply that Γ is reducible, which
contradicts the initial assumption. So, M ′ = 0, which implies

M = λm1 , (3.23)

proving the lemma.
Schur’s lemma 2. Consider a group H and two non-equivalent irreducible representations

Γ(1) and Γ(2), defined in vector spaces S1 and S2 of dimensions l1 and l2, respectively. Let M
be a linear map from S1 to S2 that satisfies the property

MΓ(1)(x) = Γ(2)(x)M (3.24)

for each x ∈H. Then, M = 0.
Proof: Suppose M ≠ 0. In general, the image of M applied to S1 is a subspace M(S1) of

S2. If ξ ∈ S1, then
MΓ(1)(x)ξ = Γ(2)(x)Mξ (3.25)
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implies that M(S1) is an invariant subspace of S2 under Γ(2). Since Γ(2) is irreducible and
M ≠ 0, we have

M(S1) = S2 . (3.26)

As the dimension of M(S1) is ≤ l1, we deduce that l2 ≤ l1. Suppose for now that Γ(1) and Γ(2)
are unitary. Let’s take the Hermitian conjugate of both sides of equation (3.24). We obtain

Γ(1)(x)M † =M †Γ(2)(x) . (3.27)

By the same argument as before, we have M †(S2) = S1, and l1 ≤ l2. But then, l1 = l2, and
M is non-singular. This would imply that Γ(1) and Γ(2) are equivalent, which contradicts our
initial assumption. We can remove the constraint on the unitarity of Γ(1) and Γ(2). If these
representations are not unitary, we can show that Γ(1)†(x−1) and Γ(2)†(x−1) are irreducible
representations. In fact, for each Γ(x), we can define

D(x) = Γ†(x−1) . (3.28)

The transformation thus defined is irreducible. D(1)(x) and D(2)(x) are defined in the dual
spaces of Γ(1) and Γ(2). They are representations since

D(x)D(y) = Γ†(x−1)Γ†(y−1)
= (Γ(x−1)Γ(y−1))†

= (Γ(y−1x−1))†

= Γ†((xy)−1)
= D(xy) . (3.29)

Equation (3.24) gives us
D(1)(x)M † =M †D(2)(x) (3.30)

for each x ∈H, and the proof proceeds as before.
Corollary. A necessary and sufficient condition for an irreducible unitary representation Γ

of a group H is that all transformations M such that, for each x ∈H,

MΓ(x) = Γ(x)M , (3.31)

are multiples of the identity.
Proof: As a consequence of the first Schur’s lemma, the condition is necessary. To prove

that it is also sufficient, we assume, for the sake of contradiction, that all linear transformations
M satisfying condition (3.31) are multiples of the identity, but that Γ is reducible. Let S be the
vector space of the definition of Γ, and let S1 be a non-empty proper invariant subspace under
Γ(x) for every x. Since Γ is reducible, we are certain that such a subspace exists. Furthermore,
as Γ is unitary, the orthogonal complement of S1, denoted as S2, is also invariant. Now, consider
a linear operator M such that

Mξ1 =m1ξ1 (3.32)

and
Mξ2 =m2ξ2 , (3.33)

where ξ1 ∈ S1, ξ2 ∈ S2, and m1 ≠m2. Clearly, M commutes with all Γ(x), but it is not a multiple
of the identity. This leads to a contradiction to the initial assumption. It follows that Γ must
be irreducible.
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Great orthogonality theorem. Let Γ(1) and Γ(2) be two non-equivalent irreducible uni-
tary representations of a finite group H of order h. We have

(i) ∑
x∈H

Γ(1)∗ij (x)Γ
(2)
kl (x) = 0 , (3.34)

(ii) ∑
x∈H

Γ(1)∗ij (x)Γ
(1)
kl (x) =

h

l1
δikδjl , (3.35)

where l1 and l2 are the dimensions of representations Γ(1) and Γ(2), respectively.
Proof: (i) Consider an arbitrary matrix X with l1 rows and l2 columns. Construct

M = ∑
x∈H

Γ(1)(x−1)XΓ(2)(x) . (3.36)

For each element y in H, we have

MΓ(2)(y) = ∑
x∈H

Γ(1)(y)Γ(1)(y−1)Γ(1)(x−1)XΓ(2)(x)Γ(2)(y)

= Γ(1)(y) ∑
x∈H

Γ(1)((xy)−1)XΓ(2)(xy)

= Γ(1)(y)M , (3.37)

where in the last equality, we used the theorem of rearrangement. According to Schur’s second
lemma, M = 0, and this is valid for an arbitrary matrix X. By expanding the indices, we can
rewrite M = 0 as

∑
x∈H

∑
i,k

Γ(1)∗ij (x)XikΓ(2)kl (x) = 0 . (3.38)

By setting Xik = 0 for all i and k except for a given pair i, k for which Xik = 1, we obtain (3.34).
(ii) If representation Γ(2) is identical to Γ(1), using a similar procedure as before, we can

conclude that the linear operation

M = ∑
x∈H

Γ(1)(x−1)XΓ(1)(x) (3.39)

commutes with all Γ(1)(y) (y ∈H). According to Schur’s first lemma, the matrix M is a multiple
of the identity

M = c(X)1 , (3.40)

where c(X) is a number depending on the choice of X. Now, let’s derive c(X). For that, we
express M by expanding its indices. We have

∑
x∈H

∑
i,k

Γ(1)ji (x
−1)XikΓ(1)kl (x) = c(X)δjl . (3.41)

Now, let’s set l = j and sum over j,

∑
x∈H

∑
i,k

Xik∑
j

Γ(1)kj (x)Γ
(1)
ji (x

−1) = l1c(X) . (3.42)

Since Γ(1)(x)Γ(1)(x−1) is the identity matrix, we obtain

c(X) = h
l1

Tr(X) . (3.43)
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Choose X as before, such that Xik = 1 for a given pair i, k and Xik = 0 for the others. We obtain
exactly relation (3.35). We can combine (i) and (ii) as follows:

∑
x∈H

( li
h
)

1
2

Γ(i)∗kl (x) (
lj

h
)

1
2

Γ(j)∗mn (x) = δijδkmδln , (3.44)

∑
x∈H

Γ(i)∗kl (x)Γ
(j)∗
mn (x) =

h

li
δijδkmδln , (3.45)

where Γ(i) and Γ(j) are two unitary irreducible representationsof H; δij = 0 if Γ(i) and Γ(j) are
not equivalent while δij = 1 if Γ(i) ≡ Γ(j)

We can view equation (3.44) as the expression of orthogonality for a set of orthonormal
vectors whose components are given by

( li
h
)

1
2

Γ(i)kl (x) . (3.46)

Notice that the index of the components of this vector is the element x that runs through the
elements of the group H. These vectors are defined in a vector space of dimension h, denoted as
Ch. Since there cannot be more than h mutually orthogonal vectors in Ch, the number of non-
equivalent irreducible representations is finite and cannot exceed h. Let NΓ be the number of
non-equivalent irreducible representations. If the i-th irreducible representation has dimension
li, then the total number of these orthonormal vectors is

l21 + l22 + . . . + l2NΓ ≤ h . (3.47)

Next, we will demonstrate that in all cases, we have l21 + l22 + . . .+ l2NΓ
= h (Burnside’s Theorem).
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3.2 Characters
Definition: Consider a representation Γ of a group H. The trace of the matrices Γ(x) is
denoted as

χ(x) = ∑
i

Γii(x) . (3.48)

In a representation Γ, all elements that are in the same class have the same trace. Indeed,
let y be an element of the group H equivalent to the element x, meaning there exists an element
u ∈H such that

y = u−1xu . (3.49)
Then

Γ(y) = Γ(u−1xu) = Γ(u−1)Γ(x)Γ(u) , (3.50)
and

χ(y) = Tr[Γ(u−1)Γ(x)Γ(u)]
= Tr[Γ(x)Γ(u)Γ(u−1)]
= Tr[Γ(x)] = χ(x) , (3.51)

where we used the property that the trace of a product of matrices is invariant under a
cyclic permutation of the matrices in the product. The set {χ(x)} of traces for all x is called
the character of the representation Γ. It is evident that two equivalent representations Γ and Γ′
have the same character since if

Γ′(x) = S−1Γ(x)S , (3.52)
then

χ′(x) = Tr[Γ′(x)]
= Tr[S−1Γ(x)S]
= Tr[Γ(x)SS−1] = χ(x) . (3.53)

From equation (3.45), setting l = k and n = m and summing over k and m (k = 1, 2, . . . , li),
(m = 1, 2, . . . , lj), we have

∑
x∈H

χ(i)∗(x)χ(j)(x) = hδij . (3.54)

If we denote the classes of H by Cµ (µ = 1, 2, . . . , NC) and the number of elements in Cµ by
nµ, equation (3.54) can be rewritten in the form

NC

∑
µ=1

nµχ
(i)∗(Cµ)χ(j)(Cµ) = hδij . (3.55)

In this equation, we have denoted by χ(i)(cµ) the trace of an element of the class Cµ in the
irreducible representation Γ(i).

The equation (3.55) represents the little orthogonality theorem. It can be interpreted
as an orthogonality relation among the NΓ vectors with components

(nµ/h)1/2χ(i)(Cµ) (3.56)

in a vector space of dimension NC . Since there cannot be more than NC linearly independent
vectors in such a space, we can establish the following inequality

NΓ ≤ NC . (3.57)
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We will see later on that it is always equality that is satisfied.
Theorem. A necessary and sufficient condition for two irreducible representations of a finit

group to be equivalent, is that their character be the same.
Proof:

(i) We have already proven that the condition is necessary.

(ii) The condition is sufficient because if χ(1)(x) = χ(2)(x) for all x, but Γ(1) is not equivalent
to Γ(2), then by the grand orthogonality theorem (3.45), we have

∑
x∈H

∣χ(1)(x)∣2 = 0

which represents a contradiction since at least the class containing the identity has a
character that is different from zero.

Thanks to the characters, we now have a tool to reduce an arbitrary representation of a finite
group H. Consider a representation Γ. We can formally write its reduction into irreducible
representations as follows:

Γ = b1Γ(1) ⊕ b2Γ(2) ⊕ . . .⊕ bNΓΓ(NΓ) , bi = 0, 1, 2, . . . . (3.58)

It is clear that for all x ∈H,

χ(x) =
NΓ

∑
i=1
biχ
(i)(x) , (3.59)

or

χ(Cµ) =
NΓ

∑
i=1
biχ
(i)(Cµ) . (3.60)

Multiply both sides of equation (3.60) by nµχ
(j)∗(Cµ) and sum over µ. Thanks to the little

orthogonality theorem (3.55), we obtain

bi =
1
h

NC

∑
µ=1

nµχ
(i)∗(Cµ)χ(Cµ) . (3.61)

Equation (3.61) is the fundamental formula for reducing an arbitrary representation into irre-
ducible representations.

From equation (3.61), we obtain

NC

∑
µ=1

nµ∣χ(Cµ)∣2 = ∑
i,j

bibj

NC

∑
µ=1

nµχ
(i)∗(Cµ)χ(j)(Cµ) = h

NΓ

∑
i=1
b2

i . (3.62)

This equation allows us to prove the following theorem.
Theorem. A necessary and sufficient condition for a representation Γ, with character χ(Cµ),

to be irreducible is that
NC

∑
µ=1

nµ∣χ(Cµ)∣2 = h . (3.63)

Proof: Indeed, if the representation Γ is irreducible, then only one of the bi in equation
(3.62) is equal to 1, with all others being zero. The condition is therefore necessary. On the
other hand, if equation (3.63) holds, then we can deduce from equation (3.62) that

NΓ

∑
i=1
b2

i = 1 i = 0, 1, 2, . . . . (3.64)
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This relation can only be satisfied in the case where one of the bi is equal to 1, with all others
being zero.

In the group theory review, we saw how to write a multiplication table for a finite group.
In particular, we constructed the multiplication table by placing the product xy in the cell
corresponding to the intersection of the row labeled with x and the column labeled with y. The
elements of the group appear in the same order in both the row and column labels. Alternatively,
we can use a different labeling scheme by designating the rows as x1 = e, x2, . . . , xh, and the
columns as x−1

1 = e, x−1
2 , . . . , x−1

h . It is clear that the sequence of inverses {x−1
i } contains all the

elements of the group in a different order. The multiplication table obtained using this labeling
scheme is as follows:

H x−1
1 = e x−1

2 x−1
3 . . . x−1

h

x1 = e e x1x
−1
2 x1x

−1
3 . . . x1x

−1
h

x2 x2 x2x
−1
2 = e x2x

−1
3 . . . x2x

−1
h

x3 x3 x3x
−1
2 x3x

−1
3 = e . . . x3x

−1
h

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
xh xh xhx

−1
2 xhx

−1
3 . . . xhx

−1
h = e

We now construct a set of matrices {Γ(xi)}, one for each element xi of the group, as follows:
the matrix Γ(xi) is of dimensions h × h and consists of zeros everywhere except at positions
corresponding to the element xi in the multiplication table we have just written. The set of
matrices obtained in this way is a representation of the group H, as we will see later. It is called
the regular representation of the group and is denoted as Γ(R). We can summarize the definition
of this representation as follows:

Γ(R)ij (x) = {
1 if xix

−1
j = x

0 otherwise. (3.65)

We can immediately see that Γ(R)(e) is the identity matrix of dimension h. Let’s now show
that Γ(R) is a representation. Indeed,

[Γ(R)(x)Γ(R)(y)]ij = ∑
k

Γ(R)ik (x)Γ
(R)
kj (y) . (3.66)

For a given i and j, the term in k in this sum is nonzero if and only if

xix
−1
k = x (3.67)

and

xkx
−1
j = y . (3.68)

Each of these two conditions uniquely determines xk. For both conditions to be satisfied
simultaneously, it is necessary to have x−1xi = yxj , which means

xix
−1
j = xy . (3.69)

In this case, the sum on the right-hand side of equation (3.66) contains a term for which
Γ(R)ik (x)Γ

(R)
kj (y) = 1, with all other terms in the sum being zero. If, on the other hand, condition

(3.69) is not met, then the terms Γ(R)ik (x)Γ
(R)
kj (y) in the sum (3.66) are identically zero. In

summary,

[Γ(R)(x)Γ(R)(y)]ij = {
1 if xix

−1
j = xy

0 otherwise. (3.70)
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But this is exactly the definition of the matrix Γ(R)(xy). Therefore, we have

[Γ(R)(x)Γ(R)(y)]ij = Γ(R)ij (xy) , (3.71)

which proves that Γ(R) is a representation of the group H.
Theorem. The regular representation of a finit group H contains each irreducible represen-

tation of the group, as many times as its dimension, this is to say:

Γ(R) = l1Γ(1) ⊕ l2Γ(2) ⊕ . . .⊕ lNΓΓ(NΓ) . (3.72)

Proof: Let
Γ(R) = b1Γ(1) ⊕ b2Γ(2) ⊕ . . .⊕ bNΓΓ(NΓ) . (3.73)

The equation (3.61) for the reduction of a representation using its characters gives us:

bi =
1
h

NC

∑
µ=1

nµχ
(i)∗(Cµ)χ(R)(Cµ)

= 1
h
χ(i)(e)h = li , (3.74)

Here, we have used the obvious property that all the χ(R)(Cµ) are zero except for χ(R)(e) = h.
Using (3.60), we have:

χ(R)(Cµ) =
NΓ

∑
i=1
liχ
(i)(Cµ) . (3.75)

This relation is very useful in the particular case where Cµ = {e}. In this case, indeed, we
have χ(i)(e) = li and:

NΓ

∑
i=1
l2i = h . (3.76)

This proves that in the relation (3.47), equality is always satisfied.
Theorem. Let Γ be an irreducible representation. The sum of Γ(x) matrices over all x

belonging to an equivalence class is a multiple of the identity matrix.
Proof: Let {x1, x2, . . . , xn} be the elements of a class of a group H. Consider the matrix:

M =
n

∑
i=1

Γ(xi) . (3.77)

By the definition of a conjugacy class, we have:

Γ(y−1)MΓ(y) =
n

∑
i=1

Γ(y−1xiy) =M , (3.78)

where we have used the theorem of rearrangement of a class. So we have:

MΓ(y) = Γ(y)M (3.79)

for each y ∈ H. By the first Schur’s lemma, M is a multiple of the identity. We notice that
this result is valid for infinite groups as well, as long as n remains finite.

For each irreducible representation Γ(i) and for each class Cµ of a finite group H, we can
construct the matrix:
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M (i)
µ =

nµ

∑
k=1

Γ(i)(x(µ)k ) =m
(i)
µ 1(i) , (3.80)

where x(µ)k is an element of the class Cµ (k = 1, 2, . . . , nµ), m(i)µ is a number, and 1(i) is the
identity matrix acting on the li-dimensional space of the representation Γ(i). Sometimes, the
matrices M (i)

µ are called "Dirac characters." Taking the trace of both sides of equation (3.80),
we obtain:

nµχ
(i)(Cµ) = lim(i)µ . (3.81)

The product of two matrices M (i)
µ and M

(i)
ν , from the same representation but different

classes Cµ and Cν , yields:

M (i)
µ M (i)

ν =
nµ

∑
k=1

nν

∑
l=1

Γ(i)(x(µ)k x
(ν)
l ) . (3.82)

The collection [x(µ)k x
(ν)
l ] (see group theory review, Chapter 2) contains all products of an

element from class Cµ with an element from class Cν (with repeated elements). In Chapter 2,
we denoted this collection as Cµ ⋅Cν . Using formula (2.54) derived in the previous chapter, we
can deduce:

M (i)
µ M (i)

ν =
NC

∑
λ=1

nµνλM
(i)
λ , (3.83)

Here, the non-negative integers nµνλ indicate the number of times class Cλ appears in the
collection Cµ ⋅Cν . We can now use equation (3.80) to obtain.

m(i)µ m(i)ν 1(i) =
NC

∑
λ=1

nµνλm
(i)
λ 1(i) . (3.84)

Equation (3.81) allows us to write

nµnνχ
(i)(Cµ)χ(i)(Cν) = li

NC

∑
λ=1

nµνλnλχ
(i)(Cλ) , (3.85)

Where the coefficients nµνλ are the same as those defining the class product expansion (2.54).
This relation is the most important result of this chapter because it will allow us to derive the
characters of all the irreducible representations of a finite group.

We can also define the Dirac character of any representation Γ as:

Mµ =
nµ

∑
k=1

Γ(x(µ)k ) , (3.86)

where x(µ)k is an element of class Cµ (k = 1, 2, . . . , nµ). Now, consider the transformation
S that reduces the representation Γ into irreducible representations. The matrices Γ′(x) =
S−1Γ(x)S will have a block structure (3.14), with each block being the matrix of an irreducible
representation Γ(i) of the group. Let’s write the reduction of Γ as follows:

Γ = Γ(i1) ⊕ Γ(i2) ⊕ . . .⊕ Γ(in) (3.87)

where n is the total number of irreducible representations involved in the reduction of Γ.
Note that the indices ij can be equal. For example, if i1 = i2 = i3 = 1, it means that representation
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Γ(1) is contained three times in the reduction of Γ. Since the matrices Mµ are sums of matrices
Γ(x), in the basis that reduces the representation Γ, the new matrices M ′

µ = S−1MµS will also
have a block structure. Moreover, we have just shown that in each subspace related to an
irreducible representation, the corresponding block of the matrix M ′

µ must be a multiple of the
identity. We thus obtain a matrix of the form:

M ′
µ =

⎛
⎜⎜⎜⎜⎜
⎝

m
(i1)
µ 1(i1) 0 0 . . . 0

0 m
(i2)
µ 1(i2) 0 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 . . . m

(in)
µ 1(in)

⎞
⎟⎟⎟⎟⎟
⎠

, (3.88)

where m(ij)
µ are complex numbers, and 1(ij) are identity matrices in each subspace corresponding

to an irreducible representation of the group. It is clear that the transformation M ′
µ = S−1MµS

simultaneously diagonalizes the matrices Mµ.
This result will be very important for applications of representation theory in physics. For

instance, when studying the symmetry group of a quantum mechanical system, the Dirac char-
acters in the Hilbert space of the system’s wave functions are observables that can be simul-
taneously diagonalized with the Hamiltonian. Such operators represent physically conserved
quantities within each subspace that is invariant under the symmetry group’s operations. Rep-
resentation theory provides a tool for finding these observables based on the system’s symmetries.

Now, let’s prove another fundamental orthogonality theorem regarding the characters.
Orthogonality theorem by column. Vectors of dimension NΓ (the number of irreducible

representation of a group H) given by

(nµ/h)1/2χ(i)(Cµ) ; i = 1, 2, . . . , NΓ , µ = 1, 2, . . . , NC , (3.89)

are orthonormal,
NΓ

∑
i=1
χ(i)∗(Cµ)χ(i)(Cν) =

h

nµ
δµν (3.90)

where δµν is the Kroeneker delta equal to 1 if the classes Cµ and Cν coincide, else is 0.
Before proving the theorem, let’s consider the collection Cµ ⋅Cν . This set contains the neutral

element e if and only if there exists an element x in Cµ such that x−1 ∈ Cν . If this is the case,
then for all other elements y in the class Cµ, the inverse element y−1 is contained in the class
Cν . In fact, for y ∈ Cµ, there exists an element u ∈ H such that y = u−1xu. Consequently,
y−1 = u−1x−1u ∈ Cν . It follows that the collection Cµ ⋅Cν contains the neutral element e of the
group H if and only if the classes Cµ and Cν are composed of mutually inverse elements. In this
case, the number of times the element e – and hence the class C1 = {e} – is contained in Cµ ⋅Cν

is nµν1 = nµ, which is the number of elements in the class Cµ. We denote the class that contains
the inverses of the elements of class Cµ as Cµ′ . The property that has just been proven can be
summarized by the notation:

nµν1 = nµδµ′ν (3.91)
Note that the classes Cµ and Cµ′ contain the same number of elements, i.e., nµ′ = nµ. In

some cases, the classes Cµ and Cµ′ are actually the same class. We will see later, for example,
that this is the case for the class denoted by 8C3 in the tetrahedral group Td. In contrast, the
same rotations occupy two different classes, 4C3 and 4C2

3 , in the group T , which, compared to
Td, does not contain spatial inversion.

At this point, it is useful to emphasize another important property of the characters. Since
a representation of a finite group is always equivalent to a unitary representation, and the
characters of two equivalent representations are the same, we can write:
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χ(i)(Cµ′) = Tr(Γ(i)(x−1))
= Tr(Γ(i)†(x))
= χ(i)∗(Cµ) (3.92)

We can also deduce that if Cµ′ ≡ Cµ, then the character for this class must be real, since we
have χ(i)(Cµ) = χ(i)∗(Cµ).

Proof of the orthogonality by column theorem. We are now able to prove the theorem
of column orthogonality. Consider equation (3.85) and sum over all the irreducible representa-
tions of the group H. We have:

NΓ

∑
i=1
nµ′nνχ

(i)(Cµ′)χ(i)(Cν) =
NC

∑
λ=1

nµ′νλnλ

NΓ

∑
i=1
liχ
(i)(Cλ) (3.93)

We have seen that:

NΓ

∑
i=1
liχ
(i)(Cλ) (3.94)

is nothing but the trace of the regular representation of an element of the class Cλ. It follows
that this quantity is zero for all Cλ except for C1 = {e}, for which it equals:

NΓ

∑
i=1
liχ
(i)(C1) =

NΓ

∑
i=1
l2i = h (3.95)

Thus:

NΓ

∑
i=1
nµ′nνχ

(i)(Cµ′)χ(i)(Cν) = nµ′ν1h (3.96)

Using relations (3.91) and (3.92), and the property nµ′ = nµ, we obtain equation (3.90), and
the theorem is thus proved.

Since the set of vectors with NΓ components (nµ/h)1/2χ(i)(Cµ) (i = 1, 2, . . . , NΓ) is orthonor-
mal, it must necessarily be:

NΓ ≤ NC (3.97)

But the little theorem of orthogonality (which essentially states that the characters of irre-
ducible representations are orthonormal by rows) allowed us to establish the inequality in the
reverse direction (3.57). We have, therefore, demonstrated that:

NΓ = NC (3.98)

The properties of the characters that we have demonstrated allow us to construct, for each
finite group H, the character table in the following way.

H C1 = {e} C2 C3 . . . CNΓ

Γ(1) 1 1 1 . . . 1
Γ(2) l2 χ(2)(C2) χ(2)(C3) . . . χ(2)(CNΓ)
Γ(3) l3 χ(3)(C2) χ(3)(C3) . . . χ(3)(CNΓ)
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Γ(NΓ) lNΓ χ(NΓ)(C2) χ(NΓ)(C3) . . . χ(NΓ)(CNΓ)
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In this character table, each row contains the characters of an irreducible representation, and
each column represents a conjugacy class of the group. The first row contains the character of the
identity irreducible representation, for which Γ(1)(x) = 1, and thus χ(1)(x) = 1 for every element
x of H. The first column contains the character for the class C1 = {e} for each irreducible
representation. We have seen that the representation Γ(e) of the group’s neutral element is
always the identity in the representation’s defining space. The character is, therefore, equal
to the dimension of the space. For the irreducible representations Γ(i), we have indicated the
dimensions of the defining spaces by li. Since NC = NΓ, the character table is square.

The character table can generally be deduced from equation (3.85). This equation defines
an algebra of characters from the algebra of classes. To determine the characters, proceed as
follows:

(i) From the group H multiplication table, deduce the conjugacy classes Cµ (µ = 1, 2, . . . , NC).

(ii) Build all possible multiplications Cµ ⋅ Cν of two classes (keeping repeated elements) and
determine the numbers nµνλ that appear in the expansion (2.54)

Cµ ⋅Cν =
NC

∑
λ=1

nµνλCλ .

(iii) Once the nµνλ are determined, use equation (3.85) to determine algebraic relations between
the characters χ(i)(Cµ) for each possible value of li. For example, by setting li = 1 in
(3.85) and choosing all possible pairs µ, ν, we obtain a system of algebraic equations for
the characters of possible irreducible representations of dimension 1.

(iv) We know that such a procedure can be repeated a maximum of NC times, after which all
rows of the character table will be filled.

(v) In general, it is not necessary to repeat procedure (iii) for all irreducible representations.
At a certain point in the derivation, we can often deduce the remaining characters using
the orthogonality theorems (3.55) and (3.90), and relations (3.63), (3.92), and Burnside’s
theorem (3.76).

Once the character table is obtained, we have the tools to reduce any arbitrary represen-
tation Γ of a finite group to a direct sum of irreducible representations. Suppose we have a
representation Γ expressed in the form of matrices Γ(x) for each element x of the group. From
the matrices Γ(x), we can immediately calculate their trace and hence the characters χ(Cµ) of
the representation Γ. Then, using equation (3.61) and the knowledge of the group’s character
table, we can calculate the coefficients bi in the reduction

Γ = b1Γ(1) ⊕ b2Γ(2) ⊕ . . .⊕ bNΓΓ(NΓ) . (3.99)

The final step of the problem is to find the transformation S that reduces the representation
Γ to a block structure. We will describe a systematic method for finding this transformation in
the chapter concerning applications in physics.
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Chapter 4

Applications in Physics

The purpose of this chapter is to demonstrate how the theory of representations applies to a
problem in physics.

We can often formulate a physical problem in the mathematical form of an eigenvalue problem
in a suitable vector space. As we saw in the first chapter, for example, the problem of classical
mechanics of the vibrational modes of a molecule can be reduced to an eigenvalue problem in
the vector space of displacements of the atoms that make up the molecule. The most important
example is the solution of a problem in quantum mechanics. In this case, we seek the eigenvectors
and eigenvalues of the Hamiltonian operator in a Hilbert space of functions. In all these cases,
the exact solution of the problem is often very difficult to find. It is useful to have a rigorous
method that allows us to simplify the problem. The method that arises from the symmetry
properties of the system and the representations of groups is a very powerful method in this
regard. We will see later that it allows us to predict the degeneracy of an energy eigenvalue and
restrict ourselves to subspaces of limited dimension in the search for eigenstates.

In the rest of this chapter, we will develop this method. For this, we will consider an example
of a problem in quantum mechanics. The extension to other types of problems, for example, in
classical mechanics, will be discussed in examples. We will also restrict ourselves to symmetry
operations of rotation or rotation-inversion, which form the group of rotation-inversion O(3).
This group will be described in detail in the following chapters. It should not be forgotten
that other symmetry operations in physics are possible. Namely, (i) translation operations,
(ii) permutation operations in the case of systems with multiple identical particles, (iii) time
reversal, and (iv) charge conjugation.

4.1 Symmetries in Quantum Mechanics
A system with N particles (without spin) in quantum mechanics is characterized by its wave
function ψ(x1,x2, . . . ,xN), where the xi are vectors in three-dimensional space R3. Consider a
transformation R from the three-dimensional rotation-inversion group O(3). The operator R is
a three-dimensional orthogonal matrix. If the system is transformed by an operation R, then
each position vector xi is transformed into a new vector as follows:

xi → x′i = Rxi . (4.1)

We define a new function PRψ(x′1,x′2, . . . ,x′N) such that its value at position {x′i} is equal to
the value of the old function at position {xi}, meaning:

PRψ(x′1,x′2, . . . ,x′N) = ψ(x1,x2, . . . ,xN)
= ψ(R−1x′1,R−1x′2, . . . ,R−1x′N) . (4.2)
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Such a definition makes physical sense as it corresponds to performing a rotation of the system
in space. Since we do not consider particle permutation operations, the operations R act in-
dependently on each position xi. Without loss of generality, we can consider a single-particle
system. In this case, the definition (4.2) becomes simply:

PRψ(x) = ψ(R−1x) . (4.3)

Subsequently, to simplify the notation, we will omit the prime in the expression x′ when it is
not necessary, and we will indicate x as the position after the transformation.

Now consider a finite group G = {Ri} of orthogonal transformations. Associated with this
group, there is a group of operations {PRi}. To prove that it is a group, we will apply two
successive transformations, R and S, from the group. The first operation transforms x into
x′ = Rx, and the second transforms x′ into x′′ = Sx′ = (SR)x. We have:

PSPRψ(x′′) = PRψ(x′)
= ψ(x)
= ψ((SR)−1x′′)
= PSRψ(x′′) , (4.4)

hence:
PSPR = PSR . (4.5)

Consider the inner product in the space of functions ψ(x) defined as:

⟨ψ∣ϕ⟩ = ∫ dxψ∗(x)ϕ(x) (4.6)

for each pair of complex functions ψ(x) and ϕ(x). We deduce that PR is a unitary operator.
Indeed, we have

⟨PRψ∣PRϕ⟩ = ∫ dx(PRψ(x′))∗(PRϕ(x′))

= ∫ dx ∣∂(x
′
1, x
′
2, x
′
3)

∂(x1, x2, x3)
∣ψ∗(x)ϕ(x)

= ⟨ψ∣ϕ⟩ , (4.7)

since the Jacobian
∣∂(x

′
1, x
′
2, x
′
3)

∂(x1, x2, x3)
∣ (4.8)

of the transformation is equal to 1 for an orthogonal transformation.
As an example, consider an operation PR that corresponds to a rotation by an angle θ around

the x3 axis. The coordinate transformation is

x′1 = x1 cos(θ) − x2 sin(θ)
x′2 = x1 sin(θ) + x2 cos(θ)

x′3 = x3 . (4.9)

We have
PRψ(x1, x2, x3) = ψ(x1 cos(θ) + x2 sin(θ),−x1 sin(θ) + x2 cos(θ), x3) . (4.10)

However, please note that in this expression, the coordinates x1, x2, x3 are the coordinates of
the point after the transformation and should be denoted as x′1, x′2, x′3. Nevertheless, we have
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chosen to denote it as x, which represents an arbitrary position after the transformation. For
example, if ψ(x1, x2, x3) = x2

1 − x2
2, then

PRψ(x1, x2, x3) = ψ(x1, x2, x3) cos(2θ) + ϕ(x1, x2, x3) sin(2θ) , (4.11)

where
ϕ(x1, x2, x3) = 2x1x2 . (4.12)

On the other hand, if ψ(x1, x2, x3) = x2
1 + x2

2, then we obtain

PRψ(x1, x2, x3) = ψ(x1, x2, x3) . (4.13)

Now, let’s consider the Hamiltonian operator H(x). This operator, for a spinless particle,
generally depends on both the position x and the momentum, which, in the position representa-
tion, is given by p = −ih̵∇x. It’s evident that the components of p follow the same transformation
law as x, subject to a transformation R. According to the definition, the operator PR acts on
the function H(x)ψ(x) as

PR(H(x)ψ(x)) =H(R−1x)ψ(R−1x) . (4.14)

We say that the system is invariant under a transformation R if the Hamiltonian of the
transformed system is identically the same as for the system before the transformation. This
implies that H(R−1x) =H(x). The expression (4.14) gives us

PR(H(x)ψ(x)) = H(x)ψ(R−1x)
= H(x)PRψ(x) , (4.15)

which, in compact notation, is written as

[H,PR] =HPR − PRH = 0 . (4.16)

We have thus proven that if a physical system is invariant under a transformation R, it is
equivalent to saying that the commutator of its Hamiltonian with the transformation operator
PR is zero. We call R a symmetry of the system. Based on this definition, it’s evident that the
set {R} of all symmetry transformations of the system forms a group. In this case, it is referred
to as the symmetry group of the system. As we have seen, the set of operations PR also forms
a group that is isomorphic to the group {R}.

Consider a system characterized by a Hamiltonian H and a symmetry group G = {R}.
Suppose that ϕ is an eigenstate of H with eigenvalue E. Then PRϕ is also an eigenstate of H
with the same eigenvalue. Indeed,

HPRϕ = PRHϕ = EPRϕ . (4.17)

If the eigenvalue E is non-degenerate, this implies that PRϕ is equal to ϕ, up to a complex
numerical factor (with absolute value 1). If, on the other hand, E is l-fold degenerate, then we
can define a set of orthonormal vectors {ϕk} (k = 1, 2, . . . , l), which are eigenvectors of H with
eigenvalue E. These vectors generate a subspace S. In this case, the vector PRϕk is still an
eigenstate with eigenvalue E and must be a linear combination of the vectors {ϕk}, i.e.,

PRϕk =
l

∑
n=1

ϕnΓnk(R) . (4.18)

The complex numbers Γnk(R) = ⟨ϕn∣PR∣ϕk⟩ are the elements of a unitary matrix (since the
operator PR is unitary), denoted as Γ(R). The set of matrices {Γ(R)} for each R forms a
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unitary representation of the group G. If we choose another orthonormal basis {ψk} for the
subspace S of eigenstates of H with eigenvalue E, this basis is related to the old one by a
unitary transformation, and the representation it generates is equivalent to Γ(R). Consider now
the subspace S of eigenstates of H with eigenvalue E. Suppose there are no proper subspaces of
S that are invariant under the operations {PR}. In this case, the representation Γ(R) related to
S is, by definition, irreducible. The degeneracy of the energy level E is then called "necessary."
If, on the other hand, there exists a proper subspace of S that is invariant under the {PR},
then the representation Γ(R) is reducible, and the degeneracy is called "accidental." Such a
denomination is clearly justified by the considerations we have made. If a subspace is invariant
under the symmetry group {PR}, then all vectors in that subspace must necessarily have the
same eigenvalue. Indeed, given a vector ϕ ∈ S, the vectors {PRϕ} for all R generate the subspace
S and are all degenerate by (4.17). The symmetry group G, on the other hand, does not impose
any degeneracy between two eigenstates of H belonging to different invariant subspaces. In this
case, degeneracy would be of an accidental nature.

In general, in nature, we rarely have accidental degeneracies. If an accidental degeneracy
appears in the system under analysis, most of the time, it is due to a misidentification of the
symmetry group of the system. In such situations, additional symmetries are often found that
have gone unnoticed and can explain the observed degeneracies. A very well-known example is
that of the s and p states of an electron in the hydrogen atom. The 2p states have the form
−(1/
√

2)(x + iy)f(r), zf(r), (1/
√

2)(x − iy)f(r), where f(r) is a function of r = ∣r∣. They
generate a three-dimensional function space that defines an irreducible representation of the
spherical group O(3) (it’s an infinite group, so we can’t apply all the properties seen here).
Similarly, the 2s state has the form f(r) and generates the identity representation of the group
O(3). These two representations are irreducible and distinct. However, we know that the 2s
and 2p levels (in general, the ns, np, etc. levels) are degenerate. The degeneracy in this case
is accidental, given the symmetry group of rotation-inversion O(3). In reality, it is possible to
show that the hydrogen atom is characterized by an additional symmetry, and the symmetry
group is SO(4) instead of O(3). This hidden symmetry of the hydrogen atom is one of the most
interesting aspects of symmetries in physics and highlights the utility of the formalism we are
dealing with here.

Theorem. Consider two subspaces Si and Sj , not necessarily distinct or orthogonal, defining
two unitary irreducible representations Γ(i) and Γ(j), of dimensions li and lj , respectively, of
a finite group G. Consider two sets of orthonormal vectors {ϕ(i)k } (k = 1, 2, . . . , li) and {ψ(j)k }
(k = 1, 2, . . . , lj) that are bases for Si and Sj , respectively. We say that the vector ϕ(i)k transforms
like the k-th basis function of the i-th irreducible representation. The following orthogonality
relation is satisfied

⟨ϕ(i)k ∣ψ
(j)
m ⟩ = α(i)δijδkm , (4.19)

where α(i) is a complex number.
Proof: Consider the li × lj matrix defined by Mkm = ⟨ϕ(i)k ∣ψ

(j)
m ⟩. For each element R of the

symmetry group, we can establish the following relations

⟨ϕ(i)k ∣ψ
(j)
m ⟩ = ⟨PRϕ

(i)
k ∣PRψ

(j)
m ⟩

= ⟨ϕ(i)k Γ(i)(R)∣ψ(j)m Γ(j)(R)⟩
= Γ(i)†(R)⟨ϕ(i)k ∣ψ

(j)
m ⟩Γ(j)(R)

= (Γ(i)(R))−1⟨ϕ(i)k ∣ψ
(j)
m ⟩Γ(j)(R) , (4.20)

where the first equality follows from the unitarity of PR, the second from the definition of the
representation, the third from the definition of the scalar product, and the fourth from the
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unitarity of the representation. For each element R of the group, we therefore have Γ(i)(R)M =
MΓ(j)(R). By the two Schur’s lemmas, we have that, if i ≠ j, then M is identically zero, while,
if i = j, then M is a multiple of the identity matrix.

This theorem tells us that, after classifying the states of a quantum system according to the
irreducible representations of the symmetry group, two states can only have a non-zero inner
product if they transform like the same basis function of the same irreducible representation.
This is very important for establishing selection rules in quantum mechanics, for example.

Another theorem that follows from the theory of representations is Unsöld’s theorem, which
allows us to construct quantities that are invariant under the symmetry operations of the system.

Theorem (Unsöld’s Theorem). If {ϕ(i)n } and {ψ(i)n } (n = 1, 2, . . . , li) are two orthonormal
bases of the same unitary irreducible representation Γ(i) of a group G, then for each operation
PR of the group and for an arbitrary pair of vectors ξ and η, we have

li

∑
n=1
⟨ξ∣ψ(i)n ⟩⟨ϕ(i)n ∣η⟩ =

li

∑
n=1
⟨ξ∣PRψ

(i)
n ⟩⟨PRϕ

(i)
n ∣η⟩ . (4.21)

We can interpret this result as follows. Consider the operator

li

∑
n=1
∣ψ(i)n ⟩⟨ϕ(i)n ∣ . (4.22)

With this notation, we indicate the operator that, when applied to a vector ξ, gives us the vector

ξ′ =
li

∑
n=1

ψ(i)n ⟨ϕ(i)n ∣ξ⟩ . (4.23)

Unsöld’s theorem states that an operator constructed in this way is invariant under all trans-
formations PR, meaning

P −1
R

⎛
⎝

li

∑
n=1
∣ψ(i)n ⟩⟨ϕ(i)n ∣

⎞
⎠
PR =

li

∑
n=1
∣ψ(i)n ⟩⟨ϕ(i)n ∣ , (4.24)

where we used the unitarity property P −1
R = P

†
R.

Proof: We have
PRϕ

(i)
n =

li

∑
m=1

ϕ(i)m Γ(i)mn(R) , (4.25)

and the same relation is also valid for the {ψ(i)n }. Then

li

∑
n=1
⟨ξ∣PRψ

(i)
n ⟩⟨PRϕ

(i)
n ∣η⟩ = ∑

pqn

⟨ξ∣ψ(i)p ⟩⟨ϕ(i)q ∣η⟩Γ(i)∗pn (R)Γ(i)qn (R)

= ∑
pq

⟨ξ∣ψ(i)p ⟩⟨ϕ(i)q ∣η⟩∑
n

Γ(i)qn (R)Γ(i)np (R−1)

= ∑
p

⟨ξ∣ψ(i)p ⟩⟨ϕ(i)q ∣η⟩ , (4.26)

where we used the property Γ(i)(R)Γ(i)(R−1) = Γ(i)(RR−1) = I.
Notice that for the proof, we didn’t use the orthogonality theorem. Unsöld’s theorem is

therefore valid for infinite groups as well. This theorem plays a fundamental role in quantum
mechanics, allowing us to construct operators that are invariant under the symmetry operations
of the system under consideration.
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Let us now consider a vector ϕ in a vector space. By applying the operator PR associated
with the transformations of the group G, we obtain a set of vectors {PRϕ}. In general, these
vectors are not linearly independent. They generate a subspace S of the vector space, in which
we can define an orthonormal basis {ϕk}. From this basis, we have seen how to construct the
representation Γ of the group G related to this subspace. If the subspace S is the smallest
subspace invariant under the transformations PR, then the representation Γ is irreducible, and
the vectors {ϕk}, by definition, transform like the basis functions of this representation. If the
subspace S can be further reduced into smaller invariant subspaces, we can perform the change
of basis that accomplishes such a reduction. For the representation Γ, we have the general
relation

Γ = b1Γ(1) ⊕ b1Γ(1) ⊕ . . .⊕ bNΓΓ(NΓ) . (4.27)

We indicate the basis that reduces Γ by {ϕ(i,j)k } with i = 1, . . . , NΓ, j = 1, . . . , bi, and k = 1, . . . , li,
to emphasize that the vector ϕ(i,j)k transforms like the k-th basis function of the i-th irreducible
representation. We can thus state the following theorem:

Theorem. A vector ϕ in a vector space closed under transformations PR can be written as
a linear combination of vectors {ψ(i)k }.

ϕ =
NΓ

∑
i=1

li

∑
k=1

ψ
(i)
k . (4.28)

Here, by ψ
(i)
k , we indicate a vector that transforms like the k-th basis function of the i-th

irreducible representation of the group G.
Proof: We have already seen that the subspace, of which {ϕ(i,j)k } is a basis, is generated by

the vector ϕ. Therefore, ϕ is a linear combination of these basis vectors.

ϕ =
NΓ

∑
i=1

li

∑
k=1

bi

∑
j=1

c
(i,j)
k ϕ

(i,j)
k . (4.29)

Since the basis is orthonormal, the coefficients c(i,j)k are obtained as follows

⟨ϕ(i,j)k ∣ϕ⟩ =
NΓ

∑
p=1

lp

∑
m=1

bp

∑
n=1
⟨ϕ(i,j)k ∣ϕ(p,n)

m ⟩c(p,n)
m

=
NΓ

∑
p=1

lp

∑
m=1

bp

∑
n=1

δipδjnδkmc
(p,n)
m

= c
(i,j)
k (4.30)

Let’s define
ψ
(i)
k =

bi

∑
j=1

c
(i,j)
k ϕ

(i,j)
k , (4.31)

and we finally obtain the expression (4.28).
So we can decompose any vector ϕ into the basis vectors of irreducible representations,

provided we know these basis vectors for the subspace generated by the vector ϕ. Now, we will
learn how to determine these basis vectors. Suppose we have found one, denoted by ψ

(i)
k . By

applying the operations PR, we generate the irreducible representation Γ(i), which means

PRψ
(i)
k =

li

∑
n=1

ψ(i)n Γ(i)nk(R) . (4.32)

45



Quantum Physics II CHAPTER 4. APPLICATIONS IN PHYSICS

Multiply both sides of this expression by Γ(j)n′k′(R) and sum over the elements R of the group.
By the great orthogonality theorem, we have

∑
R

Γ(j)n′k′(R)PRψ
(i)
k =

li

∑
n=1

ψ(i)n ∑
R

Γ(j)n′k′(R)Γ
(i)
nk(R)

= h

li
δijδk′kψ

(j)
n′ . (4.33)

Therefore, the operator
Π(j)nk =

lj

h
∑
R

Γ(j)nk (R)PR (4.34)

applied to ψ
(j)
m gives δijδkmψ

(j)
n . It follows that if we know the matrices of the irreducible

representations, then from just one of these basis vectors, say ψ(j)k , we can generate the others
using the formula

ψ(j)n = Π(j)nk ψ
(j)
k . (4.35)

The operators Π(j)nn , in particular, act as projectors on states that transform like the n-th basis
function of the j-th irreducible representation.

We now know how to accomplish the two main tasks involving basis vectors of irreducible
representations. First, suppose we need to find the decomposition (4.28) of any vector ϕ. This
decomposition is obtained simply using projectors Π(j)nn as follows

ϕ =
NΓ

∑
i=1

li

∑
k=1

ψ
(i)
k ,

ψ
(i)
k = Π(i)kkϕ . (4.36)

More generally, suppose we have decomposed a representation Γ defined in a vector space S into
irreducible representations Γ = ∑NΓ

i=1 biΓ(i). We want to find the basis vectors {ϕ(i,j)k } for this
decomposition. To find, for example, the vectors ϕ(i,j)k for a given k and i and for j = 1, . . . , bi, it
will be sufficient to arbitrarily choose a vector ϕ ∈ S (for example, from the vectors of any basis
of S) and apply the projector Π(i)kk to this vector. This procedure must be repeated until a set
of bi linearly independent vectors is obtained. By applying an orthonormalization procedure,
we will have obtained the vectors ϕ(i,j)k for j = 1, . . . , bi. The vectors ϕ(i,j)n that transform like
the other basis functions of Γ(i) can be obtained using the operators Π(i)nk applied to the already
found vectors. We now know how to systematically find the basis vectors of a decomposition
into irreducible representations of a given representation.

To understand the utility of these recent developments, we recall that for a quantum sys-
tem characterized by a Hamiltonian H, the basis of the Hilbert space that diagonalizes the
Hamiltonian is a basis whose elements transform like the basis functions of the irreducible rep-
resentations of the symmetry group of the system. Suppose the vector space in which we want
to solve the Hamiltonian problem is of finite dimension. In quantum mechanics, this is generally
not the case, since the Hilbert space of square-integrable wave functions is of infinite dimension.
However, very often, to search for the eigenstates of the system, we restrict ourselves to sub-
spaces of finite dimension. Let V be such a finite-dimensional space. For the formalism of group
representation theory to be applicable, the basic assumption is that all symmetry operations
of the system, PR, are internal to the space V , which means that if ϕ ∈ V , then PRϕ ∈ V for
every PR in the symmetry group. An example of such a finite-dimensional space is given by
polynomials of degree n in the variables x, y, and z and the rotation operations. A rotation
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is a linear transformation of the three variables x, y, and z, so the transformation applied to
a function ψ(x, y, z) = xαyβzγ , with α + β + γ = n, always results in a linear combination of
monomials of the same degree n. A space of functions defined in this way is obviously of finite
dimension.

In general, the space V generates a representation Γ of the symmetry group. This represen-
tation decomposes into irreducible representations as Γ = b1Γ(1) ⊕ b2Γ(2) ⊕ . . . ⊕ bNΓΓ(NΓ). We
have already seen how to calculate the coefficients bi using the characters. Let the basis (cur-
rently unknown) in which the Hamiltonian is diagonal be denoted by ϕ(i,j)k , where i = 1, . . . , NΓ,
j = 1, . . . , bi, and k = 1, . . . , li. We seek this basis, and without the help of symmetries, we
would have to diagonalize an eigenvalue problem of dimension ∑i bili, the dimension of space V .
The advantage of knowing how to classify states with respect to their symmetry properties, and
therefore to say that such a state transforms like the k-th basis function of the i-th irreducible
representation, allows us to significantly simplify the problem. Suppose we have a state ψ(m)n

that transforms like the n-th basis function of the m-th irreducible representation. In general,
we can express this state in the chosen basis. We have

ψ(m)n = ∑
i,j,k

c
(i,j)
k ϕ

(i,j)
k , (4.37)

where the coefficients c(i,j)k are obtained from the inner products

c
(i,j)
k = ⟨ϕ(i,j)k ∣ψ(m)n ⟩ . (4.38)

But we know from the theorem on the orthogonality of basis functions of irreducible represen-
tations, equation (4.19), that in this expression, only the terms with k = n and i = m survive,
with all others being zero. Therefore, the previous expansion is reduced to

ψ(m)n =
bm

∑
j=1

c(m,j)
n ϕ(m,j)

n , (4.39)

In other words, any vector that transforms like a given basis function of an irreducible
representation is a linear combination exclusively of the basis vectors of the space with the same
symmetry. This leads to a very important property. If we have two arbitrary vectors, ψ(m)n and
ψ
(j)
k , transforming as basis functions of the irreducible representations of the symmetry group

of the system, suppose k ≠ n or j ≠m. The expansion (4.39) and the fact that the Hamiltonian
is diagonal in the basis ϕ(i,j)k ensure that

⟨ψ(j)k ∣H ∣ψ
(m)
n ⟩ = 0 . (4.40)

This is a selection rule for the matrix elements of the Hamiltonian and, in effect, it’s a par-
tial diagonalization of the problem. It tells us that the Hamiltonian problem is restricted to
each subspace of all states that transform like the same basis function of the same irreducible
representation.

Consider, for example, the k-th basis function of the i-th irreducible representation. We
can find a set of linearly independent vectors that generate this subspace, denoted as S(i)k , by
applying the projector (li/h)∑R Γ(i)kk (R)PR to all elements of the initial space V (for example, to
vectors from any basis of that space). The Hamiltonian operator has no nonzero matrix elements
between vectors from S

(i)
k and those in its orthogonal complement in V . We can diagonalize the

Hamiltonian H in this subspace, which has a dimension of bi. Therefore, we have reduced the
dimension of the problem from ∑i bili to bi without loss of generality. Furthermore, since the
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degeneracy imposed by symmetry is necessary, the eigenvalues found in this subspace will be
the same as those in other subspaces S(i)m belonging to the same irreducible representation Γ(i).

The reduction of the vector space of a Hamiltonian problem is the first of the simplifica-
tions introduced by the theory of group representations. Another significant simplification is
in the calculation of probability amplitudes, where we can systematically take advantage of the
selection rules imposed by symmetry. We will discuss this in detail in the following paragraph.

4.2 Direct Product of Representations
We will now introduce the concept of a direct product of representations, an essential tool for
constructing group representations and for applications in physics. Consider two vector spaces
S1 and S2 with elements, respectively, {ξ1, η1, ζ1, . . .} and {ξ2, η2, ζ2, . . .}. The direct product
S1 ×S2 consists of all pairs composed of a vector from S1 and a vector from S2. Such pairs have
the form {ξ1, η2}, which we simply denote as ξ1η2. This set is a vector space, provided we define
addition and scalar multiplication in such a way that we have

(a1ξ1 + b1η1)(a2ξ2 + b2η2) = a1a2ξ1ξ2 + a1b2ξ1η2 + a2b1η1ξ2 + b1b2η1η2 , (4.41)

for arbitrary complex numbers a1, a2, b1, b2.
Suppose two linear transformations, A and B, respectively transform S1 and S2 into S′1 and

S′2 as follows:

A ∶ ξ1 → ξ′1 = Aξ1

B ∶ ξ2 → ξ′2 = Bξ2 . (4.42)

We can define the direct product A×B of the two transformations as an application from S1×S2
to S′1 × S′2 that acts as follows

A ×B ∶ ξ1ξ2 → ξ′1ξ
′
2 = (A ×B)(ξ1ξ2) = (Aξ1)(Bξ2) . (4.43)

In most cases, we are interested in linear transformations from a space S to the same space
S. We will consider applications A from S1 to S1 and applications B from S2 to S2. Let {ϕi}
and {ψj} be two orthonormal bases of vector spaces S1 and S2, respectively. We can write the
transformations A and B in these bases as follows:

Aϕi = ∑
m

ϕmAmi

Bψj = ∑
n

ψnBnj .

The direct product A ×B in the basis {ϕiψj} of S1 × S2 takes the form

(A ×B)ϕiψj = (Aϕi)(Bψj) = ∑
mn

ϕmψjAmiBnj . (4.44)

It follows that the application A ×B is characterized by a matrix representation

(A ×B)mn;ij = AmiBnj . (4.45)

In this expression, A×B is a l1l2 × l1l2 matrix, where l1 and l2 are the dimensions of S1 and S2,
respectively. Note that the rows and columns of this matrix are now indicated by two indices
instead of one: in the notation (A ×B)mn;ij , the terms mn and ij denote pairs of indices, not
products.

48



CHAPTER 4. APPLICATIONS IN PHYSICS Quantum Physics II

The trace of the matrix A ×B is

χ(A ×B) = ∑
ij

(A ×B)ij;ij = ∑
i

Aii∑
j

Bjj = χ(A)χ(B) . (4.46)

So, the trace of a direct product of linear transformations is equal to the product of their traces.
If we have two transformations, A and A′, from S1 to S1, and two other transformations, B and
B′, from S2 to S2, then the direct product of transformations AA′ and BB′ is simply written as

(AA′)(BB′) = (A ×B)(A′ ×B′) . (4.47)

The proof is very straightforward:

[(AA′)(BB′)]mn;ij = (AA′)mi(BB′)nj

= ∑l1
p=1AmpA

′
pi∑

l2
q=1BnqB

′
qj

= ∑pq(A ×B)mn;pq(A′ ×B′)pq;ij (4.48)

Direct products allow us to construct new representations of a group from known represen-
tations. Consider a group H = {e, x, y, . . .} and two representations of this group, Γ and Γ′,
defined in the subspaces S and S′, with bases {ϕi} and {ϕ′i}, respectively. The dimensions of
the subspaces are l and l′, respectively. We have

Γ(x)ϕi =
l

∑
m=1

ϕmΓmi(x)

Γ′(x)ϕ′j =
l′

∑
n=1

ϕ′nΓ′nj(x) .

This allows us to define the direct product representation Γ × Γ′ as follows:

(Γ(x) × Γ′(x))(ϕiϕ
′
j) =

l

∑
m=1

l′

∑
n=1

ϕmϕ
′
nΓmi(x)Γ′nj(x)

= ∑
m,n

ϕmϕ
′
n(Γ(x) × Γ′(x))mn;ij . (4.49)

The direct product of the transformations Γ(x) × Γ′(x) forms a representation of the group H
with a dimension of l× l′. Indeed, the group’s composition law is satisfied by the matrices of the
product representation, as we can verify:

(Γ(x) × Γ′(x))(Γ(y) × Γ′(y)) = (Γ(x)Γ(y)) × (Γ′(x)Γ′(y))
= Γ(xy) × Γ′(xy) . (4.50)

The character of this representation is given by the product of the characters, as in (4.46):

χΓ×Γ′(x) = χΓ(x)χΓ′(x) . (4.51)

In general, the representation obtained by the direct product of two irreducible representations
is reducible. Let’s take, for example, the representation Γ3 × Γ3 of C3v. Its character is

χΓ3×Γ3(E) = 4
χΓ3×Γ3(2C3) = 1
χΓ3×Γ3(3σ) = 0

Using equation (3.61), we have
Γ3 × Γ3 = Γ1 ⊕ Γ2 ⊕ Γ3 . (4.52)
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4.3 Selection Rules
We will now study the constraints imposed by symmetry on probability amplitudes in quantum
mechanics.

From time-dependent perturbation theory in quantum mechanics, we know that for a system
in a state ∣ψ⟩ at time t0, the probability that it is in a state ∣ϕ⟩ at time t > t0 is related to a
quantity called the "probability amplitude." This quantity is expressed as the "matrix element":

⟨ϕ∣V (t)∣ψ⟩ , (4.53)

where V (t) is the Hamiltonian operator of the physical perturbation inducing the transition
between the two states. For example, for a transition induced by an electromagnetic field
E(t) = E0 exp(−iωt) with a long wavelength, this operator is the electric dipole operator: V (t) =
∑iE0qiri exp(−iωt), where the sum is over all charged particles in the system, ri are their
positions, and qi are their charges. In general, for a complex system, one needs to calculate
these matrix elements for several pairs of states, and it turns out that, for symmetry reasons,
most of these quantities are zero. It is very useful to establish "selection rules" that tell us when
a probability amplitude is zero without having to calculate it explicitly.

Let’s consider the operator V that describes, for example, a perturbation on a quantum
system. This operator, in general, can be written as a sum of operators V (i)m that transform like
the m-th basis function of the i-th irreducible representation of the system’s symmetry group.
For example, the dipole operator mentioned above has the symmetry of a position vector. For
a system with C3v symmetry, we know that the z component of this vector transforms as the
identity representation, while the two components x and y transform as the two basis functions
of the irreducible representation Γ3. Suppose we want to calculate the matrix elements of these
components V (i)m between states ϕ(j)n (n = 1, 2, . . . , lj) and ψ

(k)
p (p = 1, 2, . . . , lk), which are

also classified according to the irreducible representations of the symmetry group. We want to
calculate the matrix elements:

⟨ϕ(j)n ∣V (i)m ∣ψ(k)p ⟩ . (4.54)

We have seen that the vectors V (i)m ∣ψ(k)p ⟩ generate the li×lk-dimensional representation Γ(i)×Γ(k)
of the symmetry group. We can decompose this representation into irreducible representations:

Γ(i) × Γ(k) =
NΓ

∑
p=1

bpΓ(p) , (4.55)

where bp is the number of times the representation Γ(p) appears in the reduction. The theorem
(4.28) tells us that the vector V (i)m ∣ψ(k)p ⟩ can be written as:

V (i)m ∣ψ(k)p ⟩ =
NΓ

∑
p=1

lp

∑
q=1
∣ξ(p)q ⟩ , (4.56)

where the vectors ∣ξ(p)q ⟩ are linear combinations of eigenstates of the Hamiltonian, as we saw in
equation (4.39):

∣ξ(p)q ⟩ =
bp

∑
r=1

c(p,r)
q ∣ξ(p,r)

q ⟩ . (4.57)

Replacing this decomposition in the matrix element expression, we get:

⟨ϕ(j)n ∣V (i)m ∣ψ(k)p ⟩ =
NΓ

∑
p=1

lp

∑
q=1

bp

∑
r=1

c(p,r)
q ⟨ϕ(j)n ∣ξ(p,r)

q ⟩ . (4.58)
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We can now apply theorem (4.19), which ensures that most of the dot products in this
expression are zero. Only dot products between vectors that transform like the same basis
function of the same irreducible representation are different from zero. Therefore, we obtain:

⟨ϕ(j)n ∣V (i)m ∣ψ(k)p ⟩ =
bj

∑
r=1

c(j,r)
n ⟨ϕ(j)n ∣ξ(j,r)

n ⟩ . (4.59)

Furthermore, the same theorem tells us that the number of independent constants of the form
⟨ϕ(j)n ∣ξ(j,r)

n ⟩ is equal to bj . It follows that to calculate the li × lj × lk matrix elements of the form
⟨ϕ(j)n ∣V (i)m ∣ψ(k)p ⟩, it is sufficient to calculate the quantities ⟨ϕ(j)n ∣ξ(j,r)

n ⟩, the number of which is
only bj . This constitutes a significant simplification of the problem.

For example, consider the ground electronic state ψ(1) of the ammonia molecule. We know
that this state is totally symmetric and thus belongs to the Γ1 representation of the symmetry
group C3v. Now, consider a dipole-order induced transition by the electromagnetic field to
a higher energy state ψ(2) that transforms like the Γ2 representation. The dipole operator
d = (dx, dy, dz) is a three-dimensional vector, and its components are operators that transform
like the components of a vector in Cartesian space. For a system with C3v symmetry, such
a vector decomposes into the component dz, which belongs to the Γ1 representation, and the
two components (dx, dy), which transform like the basis functions of Γ3. The matrix element
⟨ψ(2)∣d∣ψ(1)⟩ is therefore given by a constant ⟨ψ(2)∣ξ(2)⟩, where ∣ξ(2)⟩ is a vector that transforms
like Γ2 and appears in the decomposition of d∣ψ(1)⟩. However, we know that d∣ψ(1)⟩ belongs to
the representation (Γ1 ⊕ Γ3) × Γ1 = Γ1 ⊕ Γ3. No component of this vector will have symmetry
Γ2, and the matrix element we seek is zero. Such a transition is said to be forbidden at the
dipole order. This selection rule has been derived solely by the application of group theory and
demonstrates the scope of this method.
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Chapter 5

The Orthogonal Group and Point
Groups

In this chapter, we will describe the properties of the group of rotations and rotation-inversions
in three dimensions. We will then derive the finite subgroups known as the crystallographic
point groups that represent the rotational symmetries of crystals and molecules.

5.1 The Orthogonal Group in Three Dimensions

The orthogonal group consists of all linear transformations of a vector in three dimensions
that preserve the norm of the vector. Before discussing this group in detail, let’s establish the
nomenclature that will be used later. Consider linear transformations of vectors of the form
ξ = (x1, x2, . . . , xn) ∈ Cn, where x1, x2, . . . , xn are complex numbers. A linear transformation A
takes the form:

ξ → ξ′ = Aξ , (5.1)

where the components of ξ′ are:
x′i = ∑

j

Aijxj . (5.2)

So, A is represented by an n×n matrix A = (Aij). The set of all non-singular n×n matrices (i.e.,
those for which inverses are defined) obviously forms a group called the general linear group in n
dimensions, denoted as GL(n). The special linear group SL(n) is the subgroup of GL(n) that
contains matrices with a determinant equal to 1.

The unitary group in n dimensions, denoted as U(n), is composed of all matrices U such
that:

⟨Uξ∣Uξ⟩ = ⟨ξ∣ξ⟩ (5.3)

for each ξ ∈ Cn. By applying this definition to the vectors ξ + η and ξ + iη, we can deduce that,
for arbitrary ξ and η, we have:

⟨Uξ∣Uη⟩ = ⟨ξ∣η⟩ (5.4)

and, therefore, U †U = I, the identity matrix. It follows that the determinant of U is a complex
number with a unit modulus, and:

U † = U−1 . (5.5)

The special unitary group SU(n) is the subgroup of U(n) that contains all matrices with a
determinant equal to 1.
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The orthogonal group in n dimensions O(n) is defined like U(n), but it contains linear
transformations of real vectors in n dimensions in the space Rn. Therefore, O(n) contains non-
singular matrices with real components. If R is an element of O(n), then the components of
ξ′ = Rξ are:

x′i = ∑
j

Rijxj . (5.6)

In this case, the invariance of the vector’s norm implies:

∑
i

(x′i)2 = ∑
jk

∑
i

RijRikxjxk = ∑
j

x2
j , (5.7)

for each vector ξ = (x1, x2, . . . , xn). It is, therefore, necessary that:

RijRik = δjk (5.8)

or:
RtR = I . (5.9)

It follows that the determinant of R can only take the values ±1 and:

R−1 = Rt . (5.10)

A matrix that satisfies such a condition is called an orthogonal matrix. The special orthogonal
group SO(n) is the subgroup of O(n) composed of matrices with a determinant equal to 1.

We can now discuss the orthogonal group in three dimensions O(3). Consider three or-
thonormal vectors ê1, ê2, and ê3 in three-dimensional space. Orthogonality implies:

êi ⋅ êj = δij . (5.11)

The vectors are oriented according to the right-hand rule, that is:

ê1 ⋅ (ê2 × ê3) = 1 . (5.12)

An orthogonal transformation R ∈ O(3) preserves the norm of all vectors and, therefore, the
angles between vectors. In fact, consider the vector x+y. Since its norm is conserved, we have:

∣R(x + y)∣2 = ∣Rx +Ry∣2 = ∣x + y∣2 . (5.13)

This is true for arbitrary x and y, which necessarily implies:

(Rx) ⋅ (Ry) = x ⋅ y , (5.14)

leading to the preservation of the angle between the two vectors. Therefore, by defining:

ê′i = Rêi , (5.15)

We find that the three vectors ê′1, ê′2, and ê′3, like the old ê1, ê2, and ê3, are orthonormal.
We can express an arbitrary vector in the basis formed by the three vectors ê1, ê2, and ê3:

x =
3
∑
i=1
xiêi . (5.16)

The transformed vector becomes:
x′ = Rx =

3
∑
i=1
xiê′i . (5.17)
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The components of x′ in the new basis ê′1, ê′2, and ê′3 are the same as those of x in the old basis.
We seek the components of the transformed vector x′ with respect to the old basis. They are
given by the dot products of the vector with the three basis vectors:

x′i = x′ ⋅ êi =
3
∑
j=1

xj êi ⋅ ê′j =
3
∑
j=1

Rijxj , (5.18)

which establishes the law of transformation of components. For the last equality, we used the
relation:

Rij = êi ⋅ ê′j , (5.19)

which easily follows from the definition (5.15). The transformation law of the basis vectors is
also immediately derived from (5.15):

ê′i =
3
∑
j=1

êjRji . (5.20)

Let’s now calculate the product ê′1 ⋅ (ê′2 × ê′3):

ê′1 ⋅ (ê′2 × ê′3) = ∑
ijk

Ri1Rj2Rk3êi ⋅ (êj × êk)

= ∑
ijk

ϵijkRi1Rj2Rk3

= det(R) , (5.21)

where we introduced the Levi-Civita tensor ϵijk, which is equal to 1 if (i, j, k) is an even per-
mutation of (1,2,3), −1 if the permutation is odd, and zero otherwise. We have shown that the
vectors ê′1, ê′2, and ê′3 are ordered according to the right-hand or left-hand rule, depending on
whether the determinant of R is 1 or −1. In particular, the inversion operator:

i ∶ x → x′ = −x , (5.22)

represented by the matrix

Ri =
⎛
⎜
⎝

−1 0 0
0 −1 0
0 0 −1

⎞
⎟
⎠
, (5.23)

having a determinant equal to −1 transforms a right-handed oriented basis into a left-handed
one. Given a transformation R ∈ O(3), two cases are possible: (i) det(R) = +1, and thus R is
also an element of SO(3). (ii) det(R) = −1, and therefore, R is given by an element of SO(3)
multiplied by Ri.

Now, consider rotations about a fixed point. These rotations form a group. This group is
isomorphic to SO(3). To demonstrate this, we need to show that each rotation is represented
by an element of SO(3) and that for each orthogonal matrix in SO(3), there corresponds to a
rotation. A rotation of an angle ϕ around an axis parallel to the unit vector ê passing through
the origin O transforms the vector x into the vector x′ given by:

x′ = x cosϕ + ê(x ⋅ ê)(1 − cosϕ) + (ê × x) sinϕ . (5.24)

This expression can be easily deduced from a graphical representation like the one shown in
Figure 5.1. This transformation is clearly linear and of the form (5.18) with components:

Rij(ϕ) = δij cosϕ + eiej(1 − cosϕ) −∑
k

ϵijkek sinϕ . (5.25)
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Figure 5.1: Diagram of a rotation by an angle ϕ of a vector x.

The elements Rij(ϕ) form an orthogonal matrix since Rij(ϕ) = Rji(−ϕ), and thus, the inverse
matrix is equal to the transposed matrix. Its determinant is equal to 1. We can demonstrate
this as follows. For ϕ = 0, we clearly have det(R(0)) = 1. Moreover, det(R(ϕ)) is a continuous
function of the variable ϕ. If there exists an angle for which det(R(ϕ)) = −1, then by continuity,
the function det(R(ϕ)) must take all values between 1 and −1. This is impossible since the
determinant of an orthogonal matrix can only take the two values ±1.

We have yet to prove that all elements of SO(3) represent rotations. Let R ∈ SO(3). We
first show that there exists at least one direction ê3 invariant under R, meaning

Rê3 = ê3 . (5.26)

To prove this, consider the eigenvalue problem

Rx = λx . (5.27)

The eigenvalues λ are solutions to the secular equation

det(R − λI) = 0 . (5.28)

Since this is a third-degree equation with real coefficients in λ, it has at least one real solution.
Let λ3 be this solution, and ê3 the corresponding eigenvector. Since R is an orthogonal matrix,
we have

(Rê3) ⋅ (Rê3) = λ2
3ê3 ⋅ ê3 = 1 , (5.29)

implying λ3 = ±1. The product of the three solutions λ1λ2λ3 is the determinant of the matrix
and must be equal to 1. If λ1 and λ2 are real, then they must be equal to 1 or −1. Two cases
are possible: (i) λ1 = λ2 = ±1 and λ3 = 1; (ii) λ1 = −λ2 = ±1 and λ3 = −1. In both cases, we have
found an eigenvalue equal to +1. If, on the other hand, λ1 and λ2 are complex, then we must
have λ2 = λ∗1 for the determinant to be real. In this latter case, the determinant condition gives
∣λ1∣2λ3 = 1, implying λ3 = +1. Therefore, the existence of the invariant direction ê3 is proved.
We now choose two unit vectors ê1 and ê2, orthogonal to each other and both orthogonal to ê3,
oriented according to the right-hand rule. The three vectors Rê1, Rê2, and Rê3 = ê3 are also
oriented according to the right-hand rule, and the first two lie in the plane defined by ê1 and
ê2. Let ϕ be the angle between ê1 and Rê1 (which is also the angle between ê2 and Rê2, due
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to the orthogonality of the matrix). The angles formed by ê1 and Rê2, and by ê2 and Rê1, are
ϕ ± π/2. It follows that

Rê1 = ê1 cosϕ + ê2 sinϕ
Rê2 = −ê1 sinϕ + ê2 cosϕ . (5.30)

The matrix R thus represents a rotation by an angle ϕ around ê3. This proves the isomorphism
between SO(3) and the group of proper rotations in three dimensions.

The elements of the matrix Rlm(ϕ) [Eq. (5.25] can be expressed in terms of three Hermitian
matrices.

J1 =
⎛
⎜
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎟
⎠
,

J2 =
⎛
⎜
⎝

0 0 i
0 0 0
−i 0 0

⎞
⎟
⎠
,

J3 =
⎛
⎜
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎟
⎠
. (5.31)

These matrices obey the commutation laws

[Jl, Jm] = JlJm − JmJl

= i∑
k

ϵlmkIk . (5.32)

The element lm of the matrix

J ⋅ ê =
3
∑
k=1

Jkek (5.33)

is given by
(J ⋅ ê)lm = −i∑

k

ϵlmk . (5.34)

Here we have formally defined a vector J = {J1, J2, J3}, where its components are the three
matrices defined in (5.31). This definition allows us to write linear combinations of these matrices
in a compact form, such as the expression (5.33). From (5.34), we deduce that

(J ⋅ ê)2lm = − ∑
n,k,p

ϵlnkekϵnmpep

= − ∑
n,k,p

ϵklnekϵmpnep

= ∑
k,p

(δkpδlm − δkmδlp)ekep

= δlm − elem , (5.35)

where we have used the properties of the Ritchie tensor ϵijk, and

(J ⋅ ê)3 = J ⋅ ê . (5.36)
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These last two results allow us to write the matrix, whose elements are given by (5.25), in the
following form

Rê(ϕ) = I − iI ⋅ ê sin(ϕ) − (I ⋅ ê)2(1 − cos(ϕ))
= exp(−iϕJ ⋅ ê) , (5.37)

, where we have used the Taylor series expansion of the exponential function. This expression
in terms of an exponential function allows us to call the matrices J1, J2, J3 the generators of
rotations in three dimensions.

5.2 Subgroups of O(3)
Transformations of the orthogonal group are often denoted by special symbols. The two com-
monly used notations are Schönflies notation and international notation.

In Schönflies notation, the following symbols are used:

(i) Cn indicates a rotation by an angle of 2π/n. If the rotation axis is not clear from the
context, it should be specified. If not specified, it’s normally assumed to be the z-axis.

(ii) i indicates inversion with respect to the origin: x → x′ = −x.

(iii) σ indicates a mirror reflection across a plane. Often, several types of mirrors are dis-
tinguished, depending on their relation to the other symmetry elements of the object of
interest. A mirror whose plane contains the axis of highest symmetry is called a "vertical"
mirror and is denoted by σv. A mirror whose plane is orthogonal to the axis of highest
symmetry is called a "horizontal" mirror and is denoted by σh. Finally, a mirror whose
plane contains the axis of highest symmetry and at the same time bisects two orthogonal
C2 axes to the axis of highest symmetry is called a "dihedral" mirror and is denoted by σd.

(iv) Sn indicates an improper rotation by an angle of 2π/n. It is a rotation of 2π/n about an
axis ê, followed by a mirror whose plane is orthogonal to ê. So,

Sn = σhCn = Cnσh , (5.38)

since these two operations commute. It’s worth noting that i = S2.

In international notation (which we won’t use but is often found in the literature), the oper-
ation Cn is simply indicated by the symbol n, ”andamirrorbym." A rotation-inversion operation
of the form iCn in Schönflies notation is denoted as n̄. So, i = 1̄. A system that has a principal
axis of symmetry ê with symmetry Cn and orthogonal C2 axes to ê is indicated as n2. The
combinations (Cn, σh) and (Cn, σv) are denoted as n

m”andnm," respectively.
We will now state the commutation rules between transformations belonging to O(3) and

the theorems of membership in conjugacy classes. These properties will be useful for the study
of irreducible representations of rotation groups and can be easily derived from (5.37).

Theorem. The only pairs R1, R2 of operations belonging to O(3) such that R1R2 = R2R1
are:

• Two rotations about the same axis.

• Two mirrors σ with respect to orthogonal planes.

• Two rotations of π (180 degrees) about orthogonal axes.
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• One rotation and one mirror σ with respect to the plane orthogonal to the axis of rotation.

• Inversion i and any element of O(3).

It should be noted that these rules are valid only for rotations applied to position functions x
as well as vector or tensor fields. We will see later that they do not apply to spinors, which are
vectors in the Hilbert space that describe the spin degree of freedom of a quantum system.

Theorem. Let G be a rotation group. Two rotations R(ϕ, ê) and R(ϕ′, ê′) are in the same
conjugacy class if ϕ = ϕ′ and there exists a rotation R(θ, n̂) ∈ G such that ê′ = R(−θ, n̂)ê.

Corollary. Let G be a rotation group. Two rotations R(ϕ, ê) and R(−ϕ, ê) are in the same
conjugacy class if there exists a rotation R(θ, n̂) ∈ G such that −ê = R(−θ, n̂)ê.

Corollary. Let G = SO(3). All rotations R(ϕ, ê), for a given ϕ and arbitrary ê, are in the
same conjugacy class. Similarly, the rotations R(−ϕ, ê) = R(ϕ,−ê) are in the same class. We
can summarize this property by saying that all rotations with the same ∣ϕ∣ belong to the same
class.

We may now describe the principal finite groups that intervene in solid and molecular physics.

Cyclic Groups Cn. These are cyclic groups generated by a rotation of 2π/n about a given
axis. They have the form

{E, Cn, C
2
n, . . . , C

n−1
n }

where, of course, E = Cn
n is the identity operator. They are indicated by Cn, which is the same

symbol used to denote a rotation operation of 2π/n. So, one must be careful, but most of the
time, the distinction can be deduced from the context. In Schoenflies notation, these groups are
simply indicated by n (which creates even more confusion!).

Groups Cnv. These are groups that contain the operations Cn and n vertical mirrors σv

with respect to vertical planes that contain the rotation axis. They have the form

{E, Cn, C
2
n, . . . , C

n−1
n , σv1, . . . , σvn}

It is clear that the composition of a mirror σvj with a rotation C l
n results in another mirror σvk.

The group C3v frequently used in these notes as an example belongs to this category.
Groups Cnh. These groups are generated by a rotation Cn and a horizontal mirror σh with

respect to a plane orthogonal to the Cn axis. Note that these groups contain not only operations
C l

n and σh since the composition of these two types of operations leads to improper rotations
Sm. For example, S2 = σhC2 = C2σh = i. This implies that for even n, inversion i is contained in
Cnh.

Improper Rotation Groups Sn. These groups are generated by an improper rotation Sn.
Again, one must distinguish between the group and the operation, both unfortunately indicated
by the same symbol. Since Sn = σhCn = Cnσh, then S2

n = C2
n, Sn

n = E for even n, and Sn
n = σh

for odd n. So, one must be careful because, for odd n, the groups Sn coincide with the groups
Cnh since they contain σh = Sn

n and Cn = σhSn. However, for even n, Sn is not the same group
as Cnh, but it contains the cyclic group C(n/2) as a subgroup.

Dihedral Groups Dn. These groups are generated by a principal rotation Cn about a given
axis and n rotations C2 about axes orthogonal to the principal axis of rotation Cn. We can
better understand the nature of these groups by noting that they represent the groups of proper
symmetries (proper rotations) of regular polygons with n sides in three dimensions.

58



CHAPTER 5. THE ORTHOGONAL GROUP AND POINT GROUPS Quantum Physics II

x

z

y

x

z

y

Figure 5.2: Diagram of a tetrahedral.

Dihedral Groups with Dihedral Mirrors Dnd. These groups consist of the elements of Dn

plus n dihedral mirrors σd. Recall that a mirror is dihedral when the mirror plane bisects the
angle between two adjacent C2 operations. The groups Dnd are the symmetry groups (including
improper rotations) of regular polygons with n sides in three dimensions.

Dihedral Groups with Horizontal Mirrors Dnh. These groups consist of the elements of
Dn plus a horizontal mirror σh.

Cubic Groups. There are five so-called cubic groups. These groups are of fundamental impor-
tance in solid-state physics, as many crystalline solids have one of these groups as their point
symmetry group of rotations. Let’s start with the T group. It represents the proper rotational
symmetry group of a tetrahedron about its geometric center. The tetrahedron is shown in Fig-
ure 5.2. We can see that it is inscribed in a cube, which explains the name of this category of
groups.

We can imagine that the vertices of the tetrahedron represent four atoms constituting the
fundamental cell of a crystal (e.g., diamond). The six edges of the tetrahedron are the diagonals
of the faces of the cube. The rotations that leave the tetrahedron invariant include the identity E,
four rotations of 2π/3 about the axes ê1 = 3−1/2(x̂+ŷ+ẑ), ê2 = 3−1/2(x̂−ŷ−ẑ), ê3 = 3−1/2(−x̂+ŷ−ẑ),
and ê4 = 3−1/2(−x̂− ŷ+ ẑ); the inverses of these four rotations, which also correspond to rotations
of 4π/3; and three rotations of π about the axes x̂, ŷ, and ẑ. Typically, this group is denoted as:

T = {E, 4C3, 4C2
3 , 3C2} ,

where we have highlighted the class structure. The second cubic group is Th. It is generated
by the elements of T plus inversion i. Its structure is:

Th = {E, 4C3, 4C2
3 , 3C2, i, 4S−1

6 , 4S6, 3σh} ,

where S−1
6 = iC3, S6 = iC2

3 , and σh = iC2. Note that the tetrahedron is not invariant under all
operations of Th. On the other hand, the group Td is the group of symmetries, both proper and
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improper, of the tetrahedron and describes the symmetry of many crystalline solids. It contains
the elements of T plus six dihedral mirror planes bisecting the (ŷ, ẑ), (ẑ, x̂), and (x̂, ŷ) planes,
respectively, and six improper rotations S4 about the x̂, ŷ, and ẑ axes. These new operations
form the 6σd and 6S4 classes. Since these new operations can change the sign of the êj axes,
(j = 1, . . . ,4), the operations C3 and C2

3 now belong to the same class, unlike in the group T .
The class structure of the group Td is therefore:

Td = {E, 8C3, 3C2, 6σd, 6S4} .

The group O is the group of proper rotations that leave a cube invariant. These operations
include the identity E, C3 rotations about the êj axes, (j = 1, . . . ,4), C2 rotations about the x̂, ŷ,
and ẑ axes, C2 rotations about the (x̂+ŷ)/

√
2, (x̂−ŷ)/

√
2, (ŷ+ ẑ)/

√
2, (ŷ− ẑ)/

√
2, (ẑ+x̂)/

√
2,and

(ẑ−x̂)/
√

2 axes, and C4 rotations about the x̂, ŷ, and ẑ axes. The latter operations also generate
C2 = C2

4 , but they are not in the same class. The class structure is:

O = {E, 8C3, 3C2, 6C ′2, 6C4} .

We conclude this list with the group Oh, generated by the elements of the group O plus
inversion i. It represents the complete group of symmetries (both proper and improper) of a
cube. Since i commutes with all other operations, the class structure is duplicated compared to
the class structure of O:

Oh = {E, 8C3, 3C2, 6C ′2, 6C4, i, 8S6, 3σh, 6σd, 6S4} .

The irreducible representations and character tables for all these groups can be found in
most books on the applications of group theory in physics.

We conclude this chapter by stating a fundamental theorem in solid-state physics, known as
the "crystallographic restriction."

Theorem (Crystallographic Restriction). In a three-dimensional periodic crystalline
solid, the only possible proper point symmetry rotations are Cn with n = 2,3,4, and 6.

This theorem is crucial because it limits the possible point symmetry operations to these
rotations, mirrors, and improper rotations generated by these two. We do not provide the proof
of this theorem here, but it arises from the three-dimensional periodicity of the crystal. An
important consequence of this theorem is that, for a crystalline solid, only 32 point groups are
possible. These are the 32 point groups. We list them in the following table.
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Cn n = 1,2,3,4,6
Cnh n = 1,2,3,4,6
Cnv n = 2,3,4,6
Sn n = 2,4,6
Dn n = 2,3,4,6
Dnh n = 2,3,4,6
Dnd n = 2,3
T

Td

Th

O

Oh

Table 5.1: The 32 ponctual groups of symmetry for periodic crystals
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Chapter 6

Perturbation Theory

When it becomes impractical to calculate the eigenstates and eigenenergies of the Hamiltonian
governing a problem, it is customary to resort to approximation techniques. These techniques
differ depending on whether there is or isn’t a time dependence, whether there is or isn’t degen-
eracy in the eigenstates, as well as depending on the relevance of the sought-after approximation
and the available computational power...

6.1 Time-Independent Perturbation Theory

We consider a physical problem governed by a Hamiltonian Ĥ, which we decompose as Ĥ =
Ĥ0+ V̂ , where Ĥ0 is a Hamiltonian with known eigenenergies and eigenstates, and the additional
term V̂ is treated as a perturbation of the system.

6.1.1 Non-degenerate Case:

Hereafter, we will denote ∣ϕn⟩ as the basis of known eigenstates of Ĥ0 and ϵn as the associated
eigenenergies. The goal of this section is to establish techniques to determine the eigenenergies
of the total Hamiltonian Ĥ and to compare their variation with respect to the eigenenergies of
Ĥ0. For sufficiently small perturbations, it is reasonable to assume that the eigenstates ∣ψn⟩ of
Ĥ will be "close" to ∣ϕn⟩, and the associated energies En will be close to ϵn.

In fact, we are dealing with a more general problem here by introducing a parameter λ ∈ R
such that Ĥ = Ĥ0 +λV̂ . We are studying the limit of this problem as λ tends to 0 (i.e., focusing
on very small variations). In the limit of very small λ, the solution can certainly be expanded
in powers of λ:

∣ψn⟩ = ∣ϕn⟩+ λ ∣ψ(1)n ⟩+ λ2 ∣ψ(2)n ⟩+ ⋯ (6.1)
En = ϵn + λE1

n + λ2E2
n +⋯. (6.2)

The Schrödinger equation is written as follows:

(Ĥ0 + V̂ ) (∣ϕn⟩+ λ ∣ψ(1)n ⟩+ λ2 ∣ψ(2)n ⟩+ ⋯)

= (ϵn + λE1
n + λ2E2

n +⋯)(∣ϕn⟩+ λ ∣ψ(1)n ⟩+ λ2 ∣ψ(2)n ⟩+ ⋯)
(6.3)
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Please note that if the radius of convergence of these series is greater than or equal to 1,
we will have a good approximation to the problem for λ = 1, i.e., for our initial problem. We
choose the normalization of the basis ∣ψn⟩ for any value of λ by imposing ⟨ϕn∣ψn⟩ = 1, which is
equivalent to imposing

⟨ϕn∣ψ(j)n ⟩ = 0, (6.4)
for all j ∈N, including the fact that the states ∣ψn⟩ are not orthonormal.

The equation 6.3 must be satisfied at each order in λ:

1. At order 0, we have :
Ĥ0 ∣ϕn⟩ = ϵn ∣ϕn⟩ ,

2. At order 1 :

Ĥ0 ∣ψ(1)n ⟩+ V̂ ∣ϕn⟩ = ϵn ∣ψ(1)n ⟩+E(1)n ∣ϕn⟩ , (6.5)

which gives us, if we apply the scalar product with ∣ϕn⟩ :

⟨ϕn∣Ĥ0∣ψ(k+1)
n ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+⟨ϕn∣V̂ ∣ϕn⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= ϵn ⟨ϕn∣ψ(1)n ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+E(1)n ⟨ϕn∣ϕn⟩
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=1

.

In other words :

⟨ϕn∣V̂ ∣ϕn⟩ = E(1)n . (6.6)

3. At order k ≥ 2 :

Ĥ0 ∣ψ(k)n ⟩+ V̂ ∣ψ(k−1)
n ⟩ = ϵn ∣ψ(k)n ⟩+E(1)n ∣ψ(k−1)

n ⟩+ ⋯ +E(k−1)
n ∣ψ(1)n ⟩+E(k)n ∣ψn⟩ ,

and once the scalar product with ∣ψn⟩ done, we obtain:

En(k) = ⟨ϕn∣V̂ ∣ψ(k−1)
n ⟩ .

So, we know how to determine, at a fixed n, the energies E
(1)
n ,⋯,E(k)n , once we know

∣ψ(1)n ⟩ ,⋯, ∣ψ(k−1)
n ⟩. However, we still need to determine ∣ψ(k)n ⟩ based on ∣ψ(1)n ⟩ ,⋯, ∣ψ(k−1)

n ⟩. To
do this, we use the condition 6.4: if we know the projection of ∣ψ(k)n ⟩ onto all ϕm for m ≠ n, we
can access ∣ψ(k)n ⟩. To achieve this, we present two approaches here: the Rayleigh-Schrödinger
theory and the Brillouin-Wigner theory.

Rayleigh-Schrödinger theory:

We have :

⟨ϕm∣Ĥ0∣ψ(k)n ⟩ + ⟨ϕm∣V̂ ∣ψ(k−1)
n ⟩

= ϵn ⟨ϕm∣ψ(k)n ⟩ +E(1)n ⟨ϕm∣ψ(k−1)
n ⟩ + ⋯ +E(k)n ⟨ϕm∣ϕn⟩,

which gives :

ϵm⟨ϕm∣ψ(k)n ⟩+ ⟨ϕm∣V̂ ∣ψ(k−1)
n ⟩

= ϵn ⟨ϕm∣ψ(k)n ⟩ +E(1)n ⟨ϕm∣ψ(k−1)
n ⟩ + ⋯ +E(k−1)

n ⟨ϕm∣ψ(1)n ⟩.
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Thus :

⟨ϕm∣ψk
n⟩ =

1
ϵn − ϵm

(⟨ϕm∣V̂ ∣ψ(k−1)
n ⟩ −E(1)n ⟨ϕm∣ψ(k−1)

n ⟩ − ⋯ −E(k−1)
n ⟨ϕm, ∣ψ(1)n ⟩)

We notice that ∣ψ(k)n ⟩ is entirely determined by the values of E(1)n ,⋯,E(k−1)
n and the states

∣ψ(1)n ⟩ ,⋯, ∣ψ(k−1)
n ⟩. To illustrate, let’s consider the calculation at the 2nd order: we need to

determine E(1)n and ψ(1)n . The first-order approximation of En is given by 6.6, but we still need
to determine ψ(1)n . We take the dot product of equation 6.5 with ∣ψm⟩, and we get:

⟨ϕm∣Ĥ0∣ψ(1)m ⟩ + ⟨ϕm∣V̂ ∣ϕn⟩ = ϵn⟨ϕm∣ψ(1)n ⟩ +E(1)n ⟨ϕm∣ϕn⟩,

from which
⟨ϕm∣ψ(1)n ⟩ =

⟨ϕm∣V̂ ∣ϕn⟩
ϵn − ϵm

.

Thus,

∣ψn⟩ = ∣ϕn⟩+ λ ∣ψ(1)n ⟩+ O(λ)

= ∣ϕn⟩+ λ ∑
m≠n

⟨ϕm∣V̂ ∣ϕn⟩
ϵn − ϵm

∣ϕm⟩+ O(λ),

which gives us E(2)n :

E(2)n = ⟨ϕn∣V̂ ∣ψ(1)n ⟩
= ∑

m

⟨ϕn∣V̂ ∣ϕm⟩ ⟨ϕm∣ψ(1)n ⟩

= ∑
m≠n

⟨ϕn∣V̂ ∣ϕm⟩ ⟨ϕm∣ψ(1)n ⟩,

from where

E(2) = ∑
m≠n

∣⟨ϕm∣V̂ ∣ϕn⟩∣
2

ϵn − ϵm
.

Note 6.1.1. 1. If ∣ϕn⟩ is the ground state, then ϵn − ϵm is always strictly negative (as we
assumed the states are non-degenerate). Thus, the energy of the ground state is always
lowered by the second-order correction.

2. The presence of a denominator in ϵn − ϵm immediately rules out the use of such a method
in the case of a degenerate level.

As previously mentioned, the states ∣ψn⟩ obtained in this way are not orthonormal. We use
6.2:

⟨ψn∣ψn⟩ = 1 +
∞

∑
k,l=1

λk+l⟨ψ(k)n ∣ψ(l)m ⟩.

In other words, the norm always entails a higher-order correction in λ. In particular, the first
term is of order 2 and is given by:

⟨ψn∣ψn⟩ = 1 + λ2 ∑
m≠n

∣⟨ψ(k)n ∣ψ(l)m ⟩∣
2

(ϵn − ϵm)2
.

Let’s focus on the conditions for the validity of such a method. As mentioned at the beginning
of this section, it is necessary for the radius of convergence of the energy series to be greater
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than or equal to 1. However, it is impossible to verify this condition since the series is not
explicitly determined. To address this issue, we impose that the coefficient of the λ2 term is
small compared to the coefficient of λ. Let ∆ be the energy difference between ϵn and the nearest
energy level; we have:

∣E(2)n ∣ = ∣ ∑
m≠n

∣⟨ϕm∣V̂ ∣ϕn⟩∣
2

(ϵn − ϵm)
∣

≤ ∑
m≠n

∣⟨ϕm∣V̂ ∣ϕn⟩∣
2

(ϵn − ϵm)

≤ 1
∆ ∑

m≠n

∣⟨ϕm∣V̂ ∣ϕn⟩∣
2

= 1
∆
(∑

m

⟨ϕm∣V̂ ∣ϕn⟩ ⟨ϕm∣V̂ ∣ϕn⟩ − ∣⟨ϕn∣V̂ ∣ϕn⟩∣
2)

= 1
∆
(∑

m

⟨ϕn∣V̂ 2∣ϕn⟩ − ⟨ϕn∣V̂ ∣ϕn⟩
2) .

The condition ∣E(2)n ∣ ≪ ∣E(1)n ∣ is satisfied as long as:

∣ ⟨ϕn∣V̂ 2∣ϕn⟩
⟨ϕn∣V̂ ∣ϕn⟩

− ⟨ϕn∣V̂ ∣ϕn⟩∣ ≪∆.

A more restrictive but also easier-to-verify condition would be to require that the elements of
the perturbation matrix are small compared to the energy level spacing. In other words, we
impose:

∣ ⟨ϕm∣V̂ ∣ϕn⟩
ϵn − ϵm

∣ ≪ 1.

Example 6.1.2. Potential of a Diatomic Molecule

The system’s Hamiltonian is given by Ĥ = Ĥ0 + V̂ with:

{ Ĥ0 = p̂2

2 +
x̂2

2 ,

V̂ = cx̂3 + qx̂4,
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Figure 6.1: Correction to the potential

The energy and eigenstates of Ĥ0 for the system are already known, especially ϵn = (n + 1
2).

The goal is to determine the E(k)n for a fixed n. For example:

E(1)n = ⟨n∣cx̂3 + qx̂4∣n⟩ .

We introduce the creation and annihilation operators in such a way that x̂ = â† + â. It is
immediately noticed that the term cx̂3 does not contribute because only terms with the same
number of â and â† operators give rise to non-zero coefficients. Furthermore, the graph 6.1.2
indicates that the coefficient q must be negative, and:

x̂4 = (â† + â)4 = ((â†)2 + â†â + ââ† + â2)
2

= (â†)4 + (â†)2â2 + (â†)3â + (â†)2ââ†

+ â2(â†)2 + â4â2â†â + â3â† + â†â(â†)2

+ â†â3 + â†ââ†â + â†âââ† + â(â†)3

+ ââ†â2 + ââ†â†â + ââ†ââ†

= (â†)2 â2 + â2 (â†)2 + â†âââ† + ââ†â†â + â†ââ†â + ââ†ââ†,

Where the last equality is obtained using the preceding note on the terms contributing in non
trivial ways Recall that

{ â ∣n⟩ =
√
n ∣n − 1⟩ ,

â† ∣n⟩ =
√
n − 1 ∣n + 1⟩ ,

which gives us

⟨n∣ (â + â†)4 ∣n⟩

= ⟨n∣ (â†)2 â2∣n⟩ + ⟨n∣â2 (â†)2 ∣n⟩ + ⟨n∣â†âââ†∣n⟩ + ⟨n∣ââ†â†â∣n⟩ + ⟨n∣â†ââ†â∣n⟩ + ⟨n∣ââ†ââ†∣n⟩

= (
√
n)2 (

√
n − 1)2 ⟨n − 2∣n − 2⟩ + (

√
n − 1)2 (

√
n)2 ⟨n − 2∣n − 2⟩

+ (
√
n − 1)2 (

√
n)2 ⟨n + 2∣n + 2⟩ + 2

√
n − 2

√
n − 1

√
n
√
n + 1⟨n∣n⟩ + (

√
n − 1)2 (

√
n + 1)2 ⟨n∣n⟩

= 6(n2 + n − 1
2
) +O().
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Note that the energy correction is negative and that when n increases, the potential increases
as well, thus energy levels get closer when n increases

Brillouin-Wigner Theory:

The practical limitations of the previous method become very clear in the previous example
and in series exercises: except for very particular cases, calculations at orders higher than 2
quickly become much too complicated. The Brillouin-Wigner theory offers an alternative to
this technique by treating the components ⟨ϕm∣ψn⟩, with m ≠ n, as O(λ). This choice seems
reasonable since the components ⟨ϕm∣ψn⟩ become arbitrarily small as λ tends to 0. We start
with the Schrödinger equation for an eigenstate ∣ψn⟩:

(Ĥ0 + λV̂ ) ∣ψn⟩ = En ∣ψn⟩ . (6.7)

Using 6.4, we notice that such a state decomposes into the unperturbed basis:

∣ψn⟩ = ∣ϕn⟩+ ∑
m≠n

∣ϕm⟩⟨ϕm∣ψn⟩.

We take the inner product of 6.7 with ∣ϕm⟩:

⟨ϕm∣ (Ĥ0 + λV̂ ) ∣ψn⟩ = En⟨ϕm∣ψn⟩
Ô⇒ (En − ϵm)⟨ϕm∣ψn⟩ = λ ⟨ϕm∣V̂ ∣ψn⟩ .

This provides an expression for ∣ψn⟩ in the unperturbed basis:

∣ψn⟩ = ∣ϕn⟩+ λ ∑
m≠n

∣ϕm⟩
⟨ϕm∣V̂ ∣ψn⟩
En − ϵm

,

= ∣ϕn⟩+ λ ∑
m≠n

∣ϕm⟩
⟨ϕm∣V̂ ∣ϕn⟩
En − ϵm

+ λ2 ∑
m≠n,j≠n

∣ϕm⟩
⟨ϕm∣V̂ ∣ϕn⟩
En − ϵm

⟨ϕj ∣V̂ ∣ϕn⟩
En − ϵj

+⋯,

allowing us to obtain an expression for energy at an arbitrary order. In fact, all that is needed
is to project equation 6.7 onto the state ∣ψn⟩:

⟨ϕn∣ (Ĥ0 + λV̂ ) ∣ψn⟩ = En⟨ϕn∣ψn⟩
Ô⇒ (En − ϵn) = λ ⟨ϕn∣V̂ ∣ψn⟩ ,

and to combine this expression with the representation of ∣ϕn⟩ in the non-degenerate basis:

En = ϵn + λ ⟨ϕn∣λV̂ ∣ψn⟩ + λ2 ∑
m≠n

⟨ϕn∣V̂ ∣ϕm⟩
1

En − ϵm
⟨ϕm∣V̂ ∣ϕn⟩

+ λ3 ∑
m≠n,j≠n

⟨ϕn∣V̂ ∣ϕm⟩
1

En − ϵm
⟨ϕm∣V̂ ∣ϕj⟩

1
En − ϵj

⟨ϕj ∣V̂ ∣ϕn⟩ + ⋯.

Note 6.1.3. 1. If we truncate the expression for En at a given order, the solution coincides
with that given by Rayleigh-Schrödinger theory. Examples are provided in the series.

2. At a given order, it is observed that the expression for energy contains all higher-order
terms, which provides a better approximation than the result obtained by Rayleigh-
Schrödinger theory.
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6.1.2 Degenerate Case:

As mentioned earlier, the Rayleigh-Schrödinger theory fails when Ĥ0 has a degenerate eigenvalue
ϵn, due to the presence of terms of the form 1

ϵn−ϵm
in the expression for En for all m ≠ n. To

solve this problem, let’s observe that the degenerate states associated with an energy ϵn form a
finite vector subspace of the Hilbert space. Suppose this subspace is generated by the eigenstates
∣ϕni⟩, for i ∈ {1,⋯, k} of H0, which are chosen to be orthonormal. The problematic terms in the

expression for ψ(1)n are of the form
⟨ϕni ∣V̂ ∣ϕnj ⟩

ϵni−ϵnj
with i ≠ j. In other words, if we can diagonalize

V̂ in the basis of states ∣ϕni⟩, the problem disappears.

First-Order Calculation:

The eigenstates of the perturbed problem are a priori decomposed in the basis of unperturbed
states as follows:

∣ψn⟩ =
k

∑
j=1
⟨ϕnj ∣ψn⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O()

∣ψnj ⟩+ ∑
m≠n

⟨ϕm∣ψn⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
O(λ)

∣ϕm⟩ .

From now on, and for the rest of this section, we will use the notation ∣ϕm⟩ to denote the
eigenstates of H0 that do not correspond to the eigenvalue ϵm.

If we project the Schrödinger equation for the eigenstate ψn of the perturbed problem onto
a degenerate unperturbed state ⟨ϕni ∣, we find:

(En − ϵn)⟨ϕni ∣ψn⟩ = λ∑
j

⟨ϕni ∣V̂ ∣ϕnj ⟩ ⟨ϕnj ∣ψn⟩ + λ ∑
m≠nj

⟨ϕni ∣V̂ ∣ϕm⟩ ⟨ϕm∣ψn⟩, (6.8)

which gives the following expression in the order in λ :

(En − ϵn) ⟨ϕni ∣ψn⟩ = λ∑
j

⟨ϕni ∣V̂ ∣ϕnj ⟩ ⟨ϕnj ∣ψn⟩ + O(λ). (6.9)

Note that solving this system of k equations is, as introduced, equivalent to a matrix diagonal-
ization problem. Indeed, if we introduce u, the vector with components (⟨ϕni ∣ψn⟩), and M (1),
the (k × k) matrix with components M (1)

ij = λ ⟨ϕni ∣V̂ ∣ϕnj ⟩, problem 6.9 can be rewritten as:

M (1)u = (En − ϵn)u.

Let E(1)n,i be the k eigenvalues of M (1), and ui the associated eigenvectors. We have:

{ En,i = ϵn +E(1)n,i ∼ O(λ),
ui

j = ⟨ϕnj ∣ψn,i⟩ ∼ O(),

where the ∣ψn,i⟩, with i ∈ {1,⋯, k}, form a basis of the subspace of degenerate states with energy
ϵn, such that V̂ is diagonal in this basis, i.e. for all i, j ∈ {1,⋯, k}:

⟨ψn,i∣V̂ ∣ψn,j⟩ = En,iδij .

Note 6.1.4. 1. If we explicitly write down the eigenvalue equation for the eigenvalue E(1)n,i , we
have, for l ∈ {1,⋯, k}:

k

∑
j=1

λ ⟨ϕnl
∣V̂ ∣ϕnj ⟩ ⟨ϕnj ∣ψn,i⟩ = (En,i − ϵn) ⟨ϕnl

∣ψn,i⟩.

It is clear that, in general, E(1)n,i ≠ ⟨ϕni ∣V̂ ∣ϕni⟩.
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2. In general, a perturbation allows us to lift degeneracy, i.e., obtain energy corrections E(1)n,i

that are all different. Any remaining degeneracies are actually due to intrinsic symmetries,
directly related to the physics of the problem.

3. Note that in the context of perturbation theory for a non-degenerate physical system, the
perturbation appears at order 1 in λ, while here it appears already at order 0.

4. So, we started with a system described by a Hamiltonian Ĥ = Ĥ0 + V̂ , where:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯
ϵ0 0
0 ϵ1 ⋱
⋮ 0 ϵ2

⋱ ⋱
ϵn
⋱

ϵn
ϵn+1

⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

A first order perturbation in λ comes to diagonalizing the block I. But at order 2 and
higher, we can no longer neglect the contributions of A, B, C and D.

Higher-order Calculations:

Starting from the problem 6.8:

(En − ϵn) ⟨ϕni ∣ψn⟩ = λ∑
j

⟨ϕni ∣V̂ ∣ϕnj ⟩ ⟨ϕnj ∣ψn⟩ + λ ∑
m≠nj

⟨ϕni ∣V̂ ∣ϕm⟩ ⟨ϕm∣ψn⟩,

Also, consider the projection of the Schrödinger equation onto an eigenstate ∣ψm⟩ of Ĥ0 not
corresponding to the eigenenergy ϵn, we have:

(En − ϵm) ⟨ϕm∣ψn⟩ = λ ⟨ϕm∣V̂ ∣ψn⟩

i.e.:
⟨ϕm∣ψn⟩ = λ

⟨ϕm∣V̂ ∣ψn⟩
En − ϵm

,

with En = ϵn+O(λ). Furthermore, the orthonormality of the family {∣ψni⟩}ki=1 allows us to write:

∣ψn⟩ = 1 ∣ψn⟩ =
⎛
⎝

k

∑
j=1
∣ϕnj ⟩⟨ϕnj ∣ ∑

m

∣ψm⟩⟨ψm∣
⎞
⎠
∣ψn⟩ =

k

∑
j=1
∣ϕnj ⟩⟨ϕnj ∣ψn⟩ + O(λ).

Thus,

⟨ϕm∣ψn⟩ = λ
k

∑
j=1

⟨ϕm∣V̂ ∣ϕnj ⟩ ⟨ϕnj ∣ψn⟩
ϵn − ϵm

+O(λ).

Injecting this expression into equation 6.8, we get:

(En − ϵn) ⟨ϕnj ∣ψn⟩ = λ
k

∑
j=1
⟨ϕni ∣V̂ ∣ϕnj ⟩ ⟨ϕnj ∣ψn⟩ (6.10)

+ λ2
k

∑
j=1
∑
m

1
ϵn − ϵm

⟨ϕni ∣V̂ ∣ϕm⟩ ⟨ϕm∣V̂ ∣ϕnj ⟩ ⟨ϕnj ∣ψm⟩. (6.11)
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As before, this leads us to an eigenvalue problem by introducing the matrix M (2), which is a
(k × k) matrix with components:

M
(2)
ij = λ ⟨ϕni ∣V̂ ∣ϕnj ⟩ + λ2∑

m

1
ϵn − ϵm

⟨ϕni ∣V̂ ∣ϕm⟩ ⟨ϕm∣V̂ ∣ϕnj ⟩ .

If we denote E(2)n,i as the k eigenvalues of M (2), and vi as the associated eigenvectors, we have
this time:

{ En,i = ϵn +E(2)n,i ∼ O(λ),
vi

j = ⟨ϕnj ∣ψn,i⟩ ∼ O() +O(λ),

where the ∣ψn,i⟩, with i ∈ {1,⋯, k}, form a basis for the subspace of degenerate states with energy
ϵn, such that V̂ is diagonal in this basis, i.e., for all i, j ∈ {1,⋯, k}:

⟨ψn,i∣V̂ ∣ψn,j⟩ = En,iδij .

Note 6.1.5. 1. With this method, we must directly calculate the perturbation to the desired
order starting from order 0 (unlike non-degenerate perturbation theory, which is iterative).

2. In the case of one-dimensional problems, degeneracy never occurs if the potential diverges
at infinity. In particular, in this case, the ground state is non-degenerate.

Example 6.1.6. Two-Dimensional Square Potential Well: Consider a particle confined in a square
region of side length a. The potential is zero inside the "box" and infinite at the "walls." The
eigenenergies of the system are known and have the form ϵp,q = h̵2π2

2ma2 (p2 + q2) with p and q ∈ N∗.
Note that the ground state, denoted as ∣1,1⟩ and corresponding to p = 1 = q, is non-degenerate,
unlike the states ∣1,2⟩ and ∣2,1⟩, which both have an energy of 5 h̵2π2

2ma2 . The corresponding
wavefunctions are given by:

ϕ1,2(x, y) =
2
a

cos(πx
a
) sin(2πy

a
),

ϕ2,1(x, y) =
2
a

cos(2πx
a
) sin(πy

a
).

To lift this degeneracy, we introduce a perturbation corresponding to a potential V (x, y) =
−k(x2 − y2), where k is a positive constant. We aim to diagonalize the matrix:

M (1) = (⟨1,2∣V̂ ∣1,2⟩ ⟨1,2∣V̂ ∣2,1⟩⟨2,1∣V̂ ∣1,2⟩ ⟨2,1∣V̂ ∣2,1⟩) .

Note that the diagonal terms are zero since the potential V̂ is an odd function in x and y (hence
zero upon integration). We need to determine the off-diagonal terms:DIAGONAL NOT

NULL: V is no
longer odd! 70
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⟨1,2∣V̂ ∣2,1⟩ = −4k
a2

a
2

∫
−a

2

dx

a
2

∫
−a

2

dy(x2 − y2) cos(πx
a
) cos(2πx

a
) sin(πy

a
) sin(2πy

a
)

= −4k
a2

a
2

∫
−a

2

dx

a
2

∫
−a

2

dy(x2 − y2)1
4
(cos (βx) + cos (γx)) (cos (γy) − cos (βy))

= −1
4

4k
a2

a
2

∫
−a

2

dx(x2 [sin(γy)
γ

− sin(βy)
β

] − [y
2 sin(γy)

γ
+ 2γ sin(γy)

γ2 − 2 sin(γy)
γ3 ]

+ [y
2 sin(βy)

β
+ 2β sin(βy)

β2 − 2 sin(βy)
β3 ]) (cos(γx) + cos(βx))∣

y=a
2

y=−a
2

= − 16
9π2ka

2 = −∆.

where we have used β = 3π
a and γ = π

a for clarity.

Thus, the Hamiltonian Ĥ = ( ϵ −∆
−∆ ϵ

) has eigenvalues

λ± =
1
2
(2ϵ ±

√
4∆2) = 1

2
(2ϵ ± 2∆) = ϵ ±∆,

in the subspace of degenerate states, and the associated eigenvectors are given by v± = (
ϵ

−∆ − λ±.
)

As mentioned throughout this chapter, this method remains valid as long as the perturbation is
small enough that nearby energy levels do not significantly overlap. In other words, the results
established above are valid as long as ∣∆∣ ≪ h̵2π2

2ma2 , i.e., as long as 1 ∼ 16
9π2ka

2 ≪ h̵2π2

2ma2 . In other
words, it requires that k ≪ h̵2

2ma4 .

6.2 Time-Dependent Perturbation Theory
So far, we have focused on approximating the eigenstates and eigenvalues of systems described by
time-independent Hamiltonians. What happens when we can no longer neglect time dependence?

We want to solve the equation:

ih̵
∂

∂t
∣ϕ(t)⟩ = Ĥ(t) ∣ϕ(t)⟩ . (6.12)

Note that this is a first-order differential equation. According to Picard’s theorem, if the system’s
state is known at a given time, then it is known at every moment. This allows us to introduce
a time evolution operator Û(t, t0) such that

∣ϕ(t)⟩ = Û(t, t0) ∣ϕ(t0)⟩ . (6.13)

If the Hamiltonian is time-independent, it has the form

Û(t, t0) = e−i
Ĥ(t−t0)

h̵ , (6.14)

but when there is explicit time dependence, we cannot use such an expression. We need to
reconsider the reasoning that led us to establish the previous form of the Hamiltonian.
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The time evolution operator is obtained by solving the system:

{ ih̵
∂
∂t Û(t, t0) = Ĥ(t)Û(t, t0),

Û(t0, t0) = 1.
(6.15)

Integrate the equation from t0 to t, and you get:

ih̵∫
t

t0
dt1

∂

∂t
Û(t1, t0) = ∫

t

t0
dt1Ĥ(t1)Û(t1, t0)

Ô⇒ ih̵ (Û(t, t0) − 1) = ∫
t

t0
dt1Ĥ(t1)Û(t1, t0).

Therefore,

Û(t, t0) = 1 −
i

h̵
∫

t

t0
dt1Ĥ(t1)Û(t1, t0)

= 1 − i
h̵
∫

t

t0
dt1Ĥ(t1) + (−

1
h̵
)

2
∫

t

t0
dt1∫

t1

t0
dt2Ĥ(t1)Ĥ(t2)Û(t2, t0)

= 1 +
∞

∑
i=1
(− i
h̵
)

n

∫
t

t0
dt1∫

t1

t0
dt2 ⋯ ∫

tn−1

t0
dtnĤ(t1)⋯Ĥ(tn)

Example 6.2.1. Integral on a triangle
We want to compute the term ∫ t

t0
dt1 ∫ t1

t0
dt2Ĥ(t1)Ĥ(t2), in other words, we are looking for

the area of the "lined over" area, in the following figure:

t

t

t1

t2

t2 ≤ t1

Which is strictly equivalent to finding the area of the "lined over" area of the following figure
(change of variable t2 ↦ t1 and reciprocally) :

t

t

t1

t2

t2 ≤ t1

72



CHAPTER 6. PERTURBATION THEORY Quantum Physics II

In other words

∫
t

t0
dt1∫

t1

t0
dt2Ĥ(t1)Ĥ(t2) = ∫

t

t0
dt1∫

t

t1
dt2Ĥ(t1)Ĥ(t2)

= ∫
t

t0
dt1∫

t

t2
dt2Ĥ(t2)Ĥ(t1),

Where the last equality is found thanks to the change of variable used above. We thus have :

∫
t

t0
dt1∫

t1

t0
dt2Ĥ(t1)Ĥ(t2) =

1
2 ∫

t

t0
dt1∫

t

t1
dt2Ĥ(t1)Ĥ(t2) +

1
2 ∫

t

t0
dt1∫

t

t1
dt2Ĥ(t1)Ĥ(t2)

= 1
2 ∫

t

t0
dt1∫

t

t0
dt2 (Ĥ(t1)Ĥ(t2)O( − ) + Ĥ()Ĥ()O( − ))

= 1
2 ∫

t

t0
dt1∫

t

t0
dt2T̂ (Ĥ(t1)Ĥ(t2)) .

The operator T̂ introduced in the last equality is called the t-ordered or time-ordered operator.
For n = 2:

T̂ (Ĥ(t1)Ĥ(t2)) = { Ĥ(t1)Ĥ(t2) if t1 ≥ t2,
Ĥ(t2)Ĥ(t1) if t2 ≥ t1.

In general, for any n ∈N:

T̂ (Ĥ(tσ(1))⋯Ĥ(tσ(n))) = Ĥ(t1)⋯Ĥ(tn) if t1 > ⋯ > tn,

where σ denotes a permutation of {1,⋯, n}. In other words, the operator T̂ reorders the operators
H(ti) on which it acts into chronological order. This allows us to rewrite the time evolution
operator in the form:

Û(t, t0) = 1 +
∞

∑
i=1
(− i
h̵
)

n 1
n! ∫

t

t0
dt1∫

t1

t0
dt2 ⋯ ∫

tn−1

t0
dtnT̂ (Ĥ(t1)⋯Ĥ(tn)) . (6.16)

Note the presence of the corrective factor 1
n! due to the fact that the integral over each of the

n! possible combinations of the positions of ti remains the same because the operator T̂ always
rearranges the ti in such a way that they return to their initial positions. It is customary to
condense the expression 6.16 into the form:

Û(t, t0) = T̂ (e−
i
h̵ ∫

t
t0

dt1Ĥ(t1)) . (6.17)

Note 6.2.2. 1. If the Hamiltonian Ĥ is independent of time, then necessarily [Ĥ(ti), Ĥ(tj)] =
0 for all ti, tj . In other words, the operator T̂ acts trivially on the product (Ĥ(tσ(1)) ⋯ Ĥ(tσ(n)))
for any permutation σ of n elements. In particular:

Û(t, t0) = 1 +
∞

∑
i=1
(− i
h̵
)

n 1
n! ∫

t

t0
dt1∫

t1

t0
dt2 ⋯ ∫

tn−1

t0
dtnT̂ (Ĥ(t1)⋯Ĥ(tn))

= 1 +
∞

∑
i=1
(− i
h̵
)

n 1
n! ∫

t

t0
dt1∫

t1

t0
dt2 ⋯ ∫

tn−1

t0
dtnĤ(t1) ⋯ Ĥ(tn),

which, in exponential notation, gives Û(t, t0) = e−
i
h̵ ∫

t
t0

dt1Ĥ(t1). Moreover, since Ĥ is inde-
pendent of time, ∫ t

t0
dt′Ĥ(t′) = Ĥ(t− t0), and the time evolution operator can be rewritten

as Û(t, t0) = T̂ (e−
i
h̵

Ĥ(t−t0)). Thus, we indeed recover the expression 6.14.
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2. In general, there is no guarantee that T̂ (e−
i
h̵ ∫

t
t0

dt1Ĥ(t1)) = e−
i
h̵ ∫

t
t0

dt1Ĥ(t1). One needs to

go back to the uncompressed expression 6.16 for Û and explicitly compute each term of
the expansion before summing them. Unless a recurrence relation between all the terms
is found, which is highly unlikely, and in addition, a convergent series is obtained, such
calculations are practically infeasible. Therefore, we focus on situations where we can limit
the expansion to a few terms. In our case, it concerns problems described by a Hamiltonian
of the form:

Ĥ(t) = Ĥ0 + V̂ (t)
where the perturbation is assumed to be small compared to Ĥ0. Let’s look more closely at
what this implies for the different terms in the sum 6.16. For example, for n = 2, we have:

Ĥ(t1)Ĥ(t2) = (Ĥ0 + V )(Ĥ0 + V ) =H2
0 + 2Ĥ0V̂ + V̂ 2.

The term of order V̂ 2 is thus generated by the terms of order V̂ 0 and V̂ 1. More generally,
each term of order V̂ n in the expansion 6.16 is determined by terms of order m < n in the
expansion of Ĥ(ti). To obtain a direct power series expansion in V̂ (t), we must change
the representation; this is the focus of the next section.

6.2.1 Interaction Representation

In the preceding chapters, we have already developed the formalism of quantum mechanics
from the perspectives of Heisenberg and Schrödinger. In this section, we introduce a new
representation called the interaction representation.

Let’s begin with some reminders:

1. In the Schrödinger representation, it is the states ∣ϕS(t)⟩ that explicitly depend on time.
The evolution is governed by the following equation:

ih̵
∂

∂t
∣ϕS(t)⟩ = Ĥ(t) ∣ϕS(t)⟩ .

In this representation, observables are fixed operators, and any time dependence they have,
if at all, is intrinsic and not governed by Ĥ.

2. In the Heisenberg viewpoint, the time dependence is instead transferred to the operators.
The state vectors are assumed to be fixed, and their time dependence is intrinsic. The
system’s time evolution is governed by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣ϕH(t)⟩ = ∣ϕS(t0)⟩ ,

ÔH(t) = Û †
S(t, t0)ÔS(t)ÛS(t, t0)

3. If we combine these two definitions, we recover ∣ϕH(t)⟩ = Û †
S(t, t0) ∣ϕS(t)⟩, which leads to:

⟨ϕH(t)∣ ÔH(t) ∣ϕH(t)⟩ = ⟨ϕH(t)∣ Û †
S(t, t0)ÔS(t)ÛS(t, t0) ∣ϕH(t)⟩

= ⟨Û †
S(t, t0)ϕS(t)∣ Û †

S(t, t0)ÔS(t)ÛS(t, t0) ∣Û †
S(t, t0)ϕS(t)⟩

= ⟨ÛS(t, t0)Û †
S(t, t0)ϕS(t)∣ ÔS(t) ∣ÛS(t, t0)Û †

S(t, t0)ϕS(t)⟩

= ⟨ϕS(t)∣ ÔS(t) ∣ϕS(t)⟩ .

In other words, the expectations are the same, regardless of the adopted representation.
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The interaction representation is a kind of "blend" of these two points of view. We start with
a problem described by a Hamiltonian of the form:

Ĥ(t) = Ĥ0 + V̂ (t),

where the time dependence due to the perturbation V̂ is transferred to the states, while the
time dependence due to Ĥ0 is transferred to the observables. In other words, and noting that
Ĥ0 is independent of time, the temporal evolution of the system is governed by the following
equations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ÔI(t) = ei
Ĥ(t−t0)

h̵ ÔS(t)e−i
Ĥ(t−t0)

h̵ ,

∣ϕI(t)⟩ = ei
Ĥ0(t−t0)

h̵ ∣ϕS(t)⟩ .
(6.18)

For the representation to be consistent, we must have ∣ϕI(t0)⟩ = ∣ϕS(t0)⟩ = ∣ϕH⟩. We introduce
the interaction evolution operator ÛI(t, t0), defined for each t as:

∣ϕI(t)⟩ = ÛI(t, t0) ∣ϕI(t0)⟩ .

This, combined with the second equation in 6.18, gives us an explicit expression for ÛI(t, t0):

ÛI(t, t0) = ei
Ĥ0(t−t0)

h̵ ÛS(t, t0). (6.19)

We still need to determine how such an operator evolves. We have:

∂

∂t
ÛI(t, t0) = ei

Ĥ0(t−t0)
h̵

iĤ0
h̵
ÛS(t, t0) + ei

Ĥ0(t−t0)
h̵ ÛS(t, t0) (

−i
h̵
) Ĥ(t)ÛS(t, t0)

= ei
Ĥ0(t−t0)

h̵ (−i
h̵
)(Ĥ(t) − Ĥ0) ÛS(t, t0)

= ei
Ĥ0(t−t0)

h̵ (−i
h̵
)(V̂ (t)) ÛS(t, t0)

= (−i
h̵
) ei

Ĥ0(t−t0)
h̵ (V̂ (t)) e−i

Ĥ0(t−t0)
h̵ ei

Ĥ0(t−t0)
h̵ ÛS(t, t0)

= (−i
h̵
)(V̂I(t)) ÛI(t, t0).

From this, we derive the differential equation:

ih̵
∂

∂t
ÛI(t, t0) = (V̂I(t)) ÛI(t, t0). (6.20)

We find an equation identical to the one governing the evolution of the operator ÛS(t, t0)
in the Schrödinger representation. However, this time, it’s the perturbation V̂I , expressed from
the interaction representation’s point of view, that plays the role of Ĥ. If we push the analogy
a bit further, we can use similar reasoning to obtain an expansion of ÛI(t, t0):

ÛI(t, t0) = 1 +
∞

∑
i=1
(− i
h̵
)

n

∫
t

t0
dt1∫

t1

t0
dt2 ⋯ ∫

tn−1

t0
dtn (V̂I(t1)⋯V̂I(tn−1))

= 1 +
∞

∑
i=1
(− i
h̵
)

n 1
n! ∫

t

t0
dt1∫

t1

t0
dt2 ⋯ ∫

tn−1

t0
dtnT̂ (V̂I(t1)⋯V̂I(tn − 1)) ,
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Which we can put in a more condensed version:

ÛI(t, t0) = T̂ (e
−i
h̵ ∫

t
t0

dt′V̂I(t
′)) .

Using 6.19, we deduce that ÛS(t, t0) = e−i
Ĥ0(t−t0)

h̵ ÛI(t, t0), which gives us the desired expansion
of ÛS(t, t0) in powers of V̂ (t). As mentioned earlier, such an expansion is only meaningful if it is
possible to truncate the sum from a certain term onwards. This is feasible when V̂ (t) is a small
perturbation. It should be noted that perturbations have always been assumed to be finite in
the reasoning conducted so far. We will discuss this assumption in the following paragraph.

6.2.2 Transition Probabilities

Consider a system described by a Hamiltonian of the form

Ĥ(t) = Ĥ0 + V̂ (t),

where V̂ = { 0 if t ≤ t0
V̂ (t) if t > t0.

and let ∣n⟩, En be the states and eigenvalues of the unperturbed

Hamiltonian. Suppose the system is in the initial state ∣i⟩ at t = t0, so its temporal evolution is
determined by:

∣ϕS(t)⟩ = US(t, t0) ∣i⟩ =
∞

∑
n=0

cn(t) ∣n⟩ ,

where ∑∞n=0∣ci∣2 = 1. Since the states ∣n⟩ are orthonormal, projecting the state ∣ϕS⟩ onto the state
∣n⟩ determines the coefficient cn, and this holds for any n ∈ N:

cn(t) = ⟨n∣ϕS(t)⟩ = ⟨n∣ÛS(t, t0)∣i⟩

= ⟨n∣e−i
Ĥ0(t−t0)

h̵
ÛI(t,t0)∣ ∣i⟩⟩

= e−i
En(t−t0)

h̵ ⟨n∣ÛI(t, t0)∣i⟩ .

This allows us to access the transition probability Pi→n from the initial state ∣i⟩ to any eigenstate
∣n⟩ of Ĥ0:

Pi→n = ∣⟨n∣ϕS(t)⟩∣2 = ∣cn(t)∣2 = ∣⟨n∣ÛI(t, t0)∣i⟩∣
2
.

Note that by assumption V̂ (t) = 0 for all t ≤ t0, so ∣i⟩ is not only an eigenstate of Ĥ0 but also
of Ĥ. Let’s determine the expression of the transition probability at the first order in V̂ . Note
that in the first order:

ÛI(t, t0) = 1 −
i

h̵
∫

t0
tdt1V̂I(t1),

thus :

⟨n∣ÛI(t, t0)∣ ∣i⟩⟩ = −
i

h̵
∫

t

0
dt1 ⟨n∣V̂I(t, t0)∣i⟩

= − i
h̵
∫

t

0
dt1 ⟨n∣e

i
h̵

Ĥ0)(t1−t0)V̂ (t, t0)e
−i
h̵
(Ĥ0)(t1−t0)∣ ∣i⟩⟩

= − i
h̵
∫

t

0
dt1e

− i
h̵
(En−Ei)(t1−t0) ⟨n∣V̂ (t, t0)∣i⟩ ,

and finally

Pi→n = ∣−
i

h̵
∫

t

0
dt1e

− i
h̵
(En−Ei)(t1−t0) ⟨n∣V̂ (t1, t0)∣i⟩∣

2
. (6.21)
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6.2.3 Particular cases :

1. Let us apply what precedes to the special case, when the potential does not depend on
time. We get

V̂ = { 0 si t ≤ t0
V̂ si t > t0,

and 6.21 becomes:

Pi→n(t) =
1
h̵2 ∣⟨n∣V̂ ∣i⟩ ∫

t

0
dt1e

− i
h̵
(En−Ei)(t1−t0)∣

2

= 1
h̵2

RRRRRRRRRRR

h̵

i
⟨n∣V̂ ∣i⟩ e

− i
h̵
(En−Ei)(t−t0) − 1
En. −Ei

RRRRRRRRRRR

2

= ∣⟨n∣V̂ ∣i⟩∣2
RRRRRRRRRRR

1 − e− i
h̵
(En−Ei)(t−t0)

En −Ei

RRRRRRRRRRR

2

= ∣⟨n∣V̂ ∣i⟩∣2 4
(En −Ei)2

sin2 ((En −Ei)(t − t0)
2h̵

) .

With no loss of generality take t0 = 0 and re-writting the preceding expression Pi→n(t) in
the form

Pi→n(t) =
1
h̵2 ∣⟨n∣V̂ ∣i⟩∣

2
f (En −Ei

h̵
) , (6.22)

with f(ω) = 4
ω2 sin (ωt

2 ) et ω = En−Ei

h̵ . Note that lim
t→0

f(ω) = t2 and

f(ω) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for ω = 2kπ
t , k ∈ Z∗

4
ω2 if ωt

2 =
π
2 + kπ,

Figure 6.2: f(ω)

At a fixed time t, the most favored transitions satisfy ω ≤ 2π
t . With what precision

can we determine the energy difference between an initial state and a final state after
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a perturbation has been applied to the system for a time ∆t? Transitions can occur to
energy states En −Ei ≤ 2πh̵

∆t . In other words, the measurement precision is at best of the
order of ∆E ≃ 2πh̵

∆t . This leads to:

∆E∆t ≥ 2πh̵, (6.23)

which recalls the uncertainty relation ∆x∆p ≥ h̵
2 . Note that this is a purely mathematical

resemblance, as energy and time are not observables.
For any value of ω, it is necessarily the case that f(ω) ≤ 4

ω2 . Furthermore, note that
lim

∆t→∞

sin2(ω)∆t
ω2∆t

= πδ(ω) where δ is the Dirac delta function.

Indeed:

lim
t→∞

1
t
∫
+∞

−∞

1
ω2 sin2(ωt)ϕ(ω)dω = lim

t→∞

1
t
∫
+∞

−∞

t2

x2 sin2(x)ϕ(x
t
)dx
t

= lim
t→∞
∫
+∞

−∞

1
x2 sin2(x)ϕ(x

t
)dx

= ϕ(0)∫
+∞

−∞

sin2(x)
x2 dx

= πϕ(0).

Thus replacing ω by En −Ei and t by t
2h̵ we obtain the Fermi golden rule :

Pi→n(t) =
2π
h̵

∆t ∣⟨n∣V̂ ∣i⟩∣2 δ(En −Ei). (6.24)

It is sometimes more usefult to work with a transition probability per unit time : ωi→n(t) =
∂Pi→n(t)

∂t , in our example

ωi→n(t) =
2π
h̵
∣⟨n∣V̂ ∣i⟩∣2 δ(En −Ei).

2. if now the potential is given by V̂ = { 0 if t ≤ t0
V̂ (t)eiωt + V̂ †e−iωt if t > t0.

Equation 6.21 is now given by :

Pi→n = ∣−
i

h̵
∫

t

0
dt1e

i(En−Ei)
t1̵
h (⟨n∣V̂ ∣i⟩ eiωt1 + ⟨n∣V̂ †∣i⟩ e−iωt1)∣

2

=
RRRRRRRRRRRRR

1 − e−i(
En−Ei

h̵
+ω)t

En −Ei + h̵ω
⟨n∣V̂ ∣i⟩ + 1 − e−i(

En−Ei
h̵
−ω)t

En −Ei − h̵ω
⟨n∣V̂ †∣i⟩

RRRRRRRRRRRRR

2

.

At long times, transitions to energy states with En = Ei ± h̵ω are favored, and we find:

ωi→n(t) =
2π
h̵
∣⟨n∣V̂ ∣i⟩∣2 δ(En −Ei + h̵ω) +

2π
h̵
∣⟨n∣V̂ †∣i⟩∣2 δ(En −Ei + h̵ω).

Notice that the first term in the sum corresponds to an energy loss by the system, while
the second term represents an energy gain by the system due to the perturbation. We can
observe that the harmonic part induces transitions with ∆E = ±h̵ω. More precisely, the
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term ∝ e−iωt is the positive-energy part that allows transitions to final states with En > Ei,
while e+iωt is the negative-energy term, allowing transitions to states with En < Ei.
This Fermi’s golden rule is very important, as it explains how optical transitions occur in
the presence of an oscillating external electromagnetic field, for instance, between levels of
an atom or a solid.

3. Let’s now consider the second-order effects. We will use a slightly different method to
obtain the Dirac delta of the golden rule.

cn(t) = e
−
i

h̵
Ent
⟨n∣ÛI(t, t0)∣i⟩

where we have omitted the constant phase eiEnt0/h̵. Instead of turning on the perturbation
at time t0, we will assume that it turns on very slowly from t = −∞.

4. Case of a nearly constant perturbation

V̂ (t) = V̂ eϵt/h̵ ϵ > 0 real

The idea is to take the limit ϵ → 0 at the end of the calculation to describe a constant
perturbation. Let’s write the perturbative expansion of ÛI(t,−∞). For the sake of cal-
culation simplicity, which will become clear later, we will use the first form, the one used
before the introduction of the time-ordered operator:

ÛI(t,−∞) = Î −
i

h̵

t

∫
−∞

dt1V̂I(t1) −
1
h̵2

t

∫
−∞

dt1

t1

∫
−∞

dt2V̂I(t1)V̂I(t2) +⋯

from which

e
i
h̵

Entcn(t) = −
i

h̵

t

∫
−∞

dt1 ⟨n∣V̂I(t1)∣i⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I1

− 1
h̵2

t

∫
−∞

dt1

t1

∫
−∞

dt2 ⟨n∣V̂I(t1)∣i⟩ ⟨n∣V̂I(t2)∣i⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I2

Let’s start with the first integral. Recall that

V̂I(t) = eiĤ0t/h̵V̂ (t)e−iĤ0th̵

= eiĤ0t/h̵V̂ eϵte−iĤ0th̵

Using the property of the eigenstate:

I1 =
t

∫
−∞

dt1 ⟨n∣V̂I(t1)∣i⟩ = ⟨n∣V̂ ∣i⟩
t

∫
−∞

dt1e
i[(En−Ei)t1−iϵt1]/h̵

= ⟨n∣V̂ ∣i⟩
exp( i

h̵
((En −Ei)t1 − iϵt1))
i

h̵
(En −Ei − iϵ

RRRRRRRRRRRRRRRRR

t

−∞

If we were to stop at the first order, we would find the golden rule as follows:

Pi→n = ∣cn(t)∣2 = ∣ ⟨n∣V̂ ∣i⟩ ∣2
e2ϵt/h̵

(En −Ei)2 + ϵ2
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But

lim
α→0

2α
x2 + α2 = 2πδ(x), here α = ϵ

h̵

lim
ϵ→0

dPi→n

dt
= ∣ ⟨n∣V̂ ∣i⟩ ∣2

⇒ lim
ϵ→0

e2ϵt/h̵2ϵ/h̵
(En −Ei)2 + ϵ2

= 2π
h̵
∣ ⟨n∣V̂ ∣i⟩ ∣2δ(En −Ei

h̵
)

= 2π
h̵
∣ ⟨n∣V̂ ∣i⟩ ∣2δ(En −Ei) = ωi→n

We have retrieved the previous result. Now let’s calculate I2:

I2 =
t

∫
−∞

dt1

t1

∫
−∞

dt2∑
m

⟨n∣V̂I(t1)∣m⟩ ⟨m∣V̂I(t2)∣i⟩

where we have introduced Î as ∑m ∣m⟩⟨m∣

I2 = ∑
m

⟨n∣V̂ ∣m⟩ ⟨m∣V̂ ∣i⟩
t

∫
−∞

dt1

t1

∫
−∞

dt2exp( i
h̵
(En −Em − iϵ)t1) exp( i

h̵
(Em −Ei − iϵ)t2)

= ∑
m

⟨n∣V̂ ∣m⟩ ⟨m∣V̂ ∣i⟩
t

∫
−∞

dt1exp( i
h̵
(En −Em − iϵ)t1)

exp( i
h̵
(Em −Ei − iϵ)t2)

i

h̵
(Em −Ei − iϵ)

RRRRRRRRRRRRRRRRR

t1

−∞

= ∑
m

⟨n∣V̂ ∣m⟩ ⟨m∣V̂ ∣i⟩
t

∫
−∞

dt1exp( i
h̵
(En −Em − iϵ)t1)

exp( i
h̵
(Em −Ei − iϵ)t1)

i

h̵
(Em −Ei − iϵ)

= −h̵2∑
m

⟨n∣V̂ ∣m⟩ ⟨m∣V̂ ∣i⟩ exp( i
h̵
(En −Ei − 2iϵ)t)

(Em −Ei − iϵ)(En −Ei − 2iϵ)

The term exp( i
h̵
(En −Ei − 2iϵ)t) /(En −Ei − 2iϵ) is the same as in I1 (except for ϵ → 2ϵ,

which doesn’t change anything in the limit ϵ→ 0). If we start from

exp( i
h̵
Ent) cn(t) = Î −

i

h̵

t

∫
−∞

dt1V̂I(t1) −
1
h̵2

t

∫
−∞

dt1

t1

∫
−∞

dt2V̂I(t1)V̂I(t2)

and replace the two previous results, we have

Pi→n = ∣ct(t)∣2 =
RRRRRRRRRRRRR

i

h̵

t

∫
−∞

dt1V̂I(t1) +
1
h̵2

t

∫
−∞

dt1

t1

∫
−∞

V̂I(t1)V̂I(t2)
RRRRRRRRRRRRR

2

= ∣⟨n∣V̂ ∣i⟩ +∑
m

⟨n∣V̂ ∣m⟩ ⟨m∣V̂ ∣i⟩
Em −Ei − iϵ

∣
2

e2ϵt/h̵

(En −Ei)2 + ϵ2

and

lim
ϵ→0

dPi→n

dt
= ωi→n =

2π
h̵
∣⟨n∣V̂ ∣i⟩ +∑

m

⟨n∣V̂ ∣m⟩ ⟨m∣V̂ ∣i⟩
Em −Ei − i0+

∣
2

δ(En −Ei)
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which is the second-order transition rate for a time-independent perturbation V̂ . Note
the sum over intermediate states ∣m⟩ typical of second-order perturbation. Here, a very
suggestive image is that the system undergoes "virtual" transitions to states ∣m⟩ without
conserving energy since they occur in an arbitrarily short time before going to state ∣n⟩.
The term 1/(x+ i0+) has a well-defined meaning, which is non-trivial when the states form
an uncountable continuous spectrum. Here, we just need to be careful with the term m = i.
This term has a singularity. It is simply due to the assumption that V̂ = cste until t = −∞.
Indeed, in the integral, we would have a contribution:

lim
ϵ→0

t

∫
t0

dt2exp (ϵt2/h̵) = t − t0 ⇒ ∣cn(t)∣ ∝ (t − t0)2 ⇒ ωi→n ∝ t − t0

In the case of a real active perturbation from t0 to t, we can assume t0 → −∞ but keep t0
finite only in the case m = i. Alternatively, we can project V̂ onto ∣i⟩ in Ĥ0:

Ĥ0 → Ĥ0 + P̂iV̂ P̂i P̂i = ∣i⟩⟨i∣
V̂ → V̂ − P̂iV̂ P̂i

Thus, for the new V̂ , ⟨i∣V̂ ∣i⟩ = 0, and we no longer have the singularity problem.
In the case of a harmonic perturbation, we can follow the same path. For simplicity, let’s
assume we have only the term with positive energy:

V̂ (t) = V̂ e−iωteϵt/h̵

Thus, we will have:

ωi→n =
2π
h̵

RRRRRRRRRRRRRRRRR

⟨n∣V̂ ∣i⟩
exp( i

h̵
((En −Ei − h̵ω)t − iϵt))

En −Ei − h̵ω − iϵ

+ ∑
m

⟨n∣V̂ ∣m⟩ ⟨m∣V̂ ∣i⟩
Em −Ei − h̵ω − iϵ

exp( i
h̵
(En −Ei − 2h̵ω − 2iϵ)t)

En −Ei − 2h̵ω − 2iϵ

RRRRRRRRRRRRRRRRR

2

This time, the two Dirac deltas have different arguments due to the factor of 2ω. The
limit as ϵ → 0 is not simple in general. Let’s assume the case where the perturbation is
zero at the first order:

ωi→n =
2π
h̵
∣∑

m

⟨n∣V̂ ∣m⟩ ⟨m∣V̂ ∣i⟩
Em −Ei − h̵ω − i0+

∣ δ(En −Ei − 2h̵ω)

Once again, this form suggests a physical problem: each virtual transition "absorbs" a
quantum of energy h̵ω. Therefore, the real transition will occur between states separated
by an energy of 2h̵ω due to the second-order perturbation.

6.2.4 Continuous Spectrum

Simple considerations allow us to generalize these results to the case with a continuous spectrum.

discrete case continuous case

∣ϕs(t)⟩ = ∑
n

cn(t) ∣n⟩ ∣ϕs(t)⟩ = ∫ dE cE(t) ∣E⟩
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Here, the eigenstates of Ĥ0. ∣E⟩ are normalized such that ⟨E∣E′⟩ = δ(E − E′). Therefore, the
state ∣E⟩ is no longer dimensionless. Its dimensions are [∣E⟩] = [1/

√
E].

If we assume ∣ϕs(t)⟩ is normalized to 1, we see from the previous relation that [cE(t)] =
[1/
√
E]. In our perturbative expressions, ∣cE(t)∣2 always appears, which has dimensions of 1/E.

This is a transition probability per unit of energy. Therefore, we can retain all the previous
formulas by replacing sums with integrals in dE, simply stating:

ωi→n(discrete case) → dωi→E

dE
(continuous case)

Example Fermi’s golden rule under harmonic perturbation:

dωi→E

dE
= 2π
h̵
∣ ⟨E∣V̂ ∣i⟩ ∣2δ(E −Ei − h̵ω)
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Chapter 7

Multi-Particle Systems

7.1 Symmetry Postulate
So far, we have limited ourselves to describing the laws governing the spatial and temporal
evolution of a single particle. How can we generalize the Schrödinger equation for a single
particle:

−h̵2

2m
∂2

∂r2ψ(r) + V (r)ψ(r) = Eψ(r) (7.1)

to systems composed of multiple particles?
Consider, for example, a system with two particles labeled as 1 and 2. Suppose that each one-

particle subsystem is described by wave functions ϕi(ri) for i ∈ {1,2}. The most naive response,
which would suggest that the product of one-particle wave functions satisfies the Schrödinger
equation, fails in the general case. Indeed, such a solution, on the one hand, assumes that the
probabilities of particle presence are entirely independent (which amounts, among other things,
to neglecting all interactions between particles), and, on the other hand, potentially violates the
linearity of the Schrödinger equation. More generally, for a system of two interacting particles
through a potential U(r1, r2), writing

(−h̵
2

2m
∂2

∂r12 −
−h̵2

2m
∂2

∂r22 + V̂ (r1) + V̂ (r2) + Û(r1, r2))ψ1(r1)ψ2(r2) = Eψ1(r1)ψ2(r2),

presupposes that the two-particle Schrödinger equation:

(−h̵
2

2m
∂2

∂r12 −
−h̵2

2m
∂2

∂r22 + V̂ (r1) + V̂ (r2) + Û(r1, r2))ψ(r1, r2) = Eψ(r1, r2), (7.2)

is separable, which is not necessarily true. We must find a way to describe the system using a
single wave function that depends on all coordinates.

Suppose the particles are indistinguishable. This implies, among other things, that the
probability ∣ψ(r1, r2)∣2 of finding one particle at point r1 and the other at point r2 must be
equal to ∣ψ(r2, r1)∣2. In other words, we must have:

ψ(r2, r1) = eiϕψ(r1, r2)
Ô⇒ ψ(r1, r2) = eiϕψ(r2, r1) = ei2ϕψ(r1, r2)
Ô⇒ ei2ϕ = 1
Ô⇒ eiϕ = ±1.
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Let P12 be the operator that acts on the system by interchanging particles 1 and 2, i.e.:

P1,2ψ(r1, r2) = ψ(r2, r1).

In the case of indistinguishable particles, this operator has eigenvalues ±1, and the correspond-
ing wave functions are either symmetric (particles described by these functions are bosons) or
antisymmetric (particles described by these functions are fermions).

This reasoning generalizes to systems of n particles, where n ∈ N. Let ψ(r1,⋯, rn) be
the wave function of the system. First of all, note that exchanging particle j and particle
k for j, k ∈ {1,⋯, n} is equivalent to exchanging particle k and particle j, i.e., Pj,k = Pk,j .
Furthermore,

Pj,k (Pj,kψ(r1,⋯, rj ,⋯, rk,⋯, rn)) = Pj,k (ψ(r1,⋯, rj ,⋯, rk,⋯, rn))
= ψ(r1,⋯, rj ,⋯, rk,⋯, rn)
= 1 (ψ(r1,⋯, rj ,⋯, rk,⋯, rn)) ,

so, Pj,kPj,k = 1, and P−1
j,k = Pj,k = Pk,j . Finally, the sign of the operator Pj,k must be the same

for all j, k ∈ {1,⋯, n}. In fact:

Pj,k = P1,jP2kP1,2P2kP1,j .

Notice that this has important consequences in the description of the physics of the system.
Consider, for example, an arbitrary observable Ô of the system. Using the above, its average
value must satisfy, for all j, k ∈N:

⟨ψ∣Ô∣ψ⟩ = ⟨ψ∣P†
j,kÔPj,k∣ψ⟩ ,

which implies Ô = P†
j,kÔPj,k, and the operatorPj,k commutes with all observables. In particular,

if Ĥ is the system’s Hamiltonian, [Pjk, Ĥ] = [Ĥ,Pjk] for all j, k ∈ N. Physically, this result
is expected: since the particles are assumed to be indistinguishable, there is no reason for the
system’s Hamiltonian to be modified by the exchange of two particles.

A "permutation operator" is an operator of the form P = ∏Pj,k. As per what was previously
discussed, since all Pj,k have the same sign, we can always simultaneously diagonalize P and Ĥ.
In other words, [P, Ĥ] = 0 for any operator P.

We have seen that the wavefunctions corresponding to eigenvalues of a permutation operator
are either symmetric or antisymmetric. Let’s demonstrate that this result generalizes to any
wavefunction, ψ.

Consider the group Sn of permutations on n objects and define the operators Ŝ = ∑P∈Sn
P

and Â = ∑P∈Sn
sign(P)P. Apply these operators to the wavefunction ψ: Ŝψ = ψS and Âψ = ψA,

where ψS and ψA satisfy Pj,kψS = ψS and Pj,kψA = −ψA, respectively. Since Pj,k is self-adjoint,
using what was previously mentioned, we have:

⟨ψS ∣ψA⟩ = ⟨ψS ∣P†
j,k∣ψA⟩ = ⟨ψS ∣Pj,k∣ψA⟩ = ⟨ψS ∣Pj,kψA⟩ = −⟨ψS ∣ψA⟩,

which means that ⟨ψS ∣ψA⟩ is a wavefunction that is either completely symmetric or completely
antisymmetric. This is the symmetry postulate, which can be restated as follows:

Postulat 7.1.1 (Symmetry Postulate). The Hilbert space of a set of n identical particles is
either even or odd under transpositions Pj,k.
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In the rest of this chapter, we aim to describe the physics of these systems. From this point
forward, H1 denotes the Hilbert space of one-particle states of a system of n particles, and the
set {ϕni(xi)}ni=1 is an orthonormal basis for these spaces. Any wavefunction ψ of the system can
be decomposed in this basis as follows:

ψ(x1,⋯, xn) = ⟨x1∣ ⊗ ⋯⊗ ⟨xn∣ ∣ψ⟩
= ⟨x1∣ ⊗ ⋯⊗ ⟨xn∣ ∑

n1,⋯,nn

cn1,⋯,nn ∣ϕn1⟩⋯ ∣ϕnn⟩

= ∑
n1,⋯,nn

cn1,⋯,nn⟨x1∣ϕn1⟩⋯⟨xn∣ϕnn⟩

= ∑
n1,⋯,nn

cn1,⋯,nnϕn1(x1)⋯ϕnn(xn),

which is neither symmetric nor antisymmetric, as predicted by the symmetry postulate. There-
fore, we can specify the form of ψ a bit further.

7.2 Bosons
Bosons are particles described by a symmetric wave function ψ, which implies the following
system:

ψ(x1,⋯, xn) = Ŝψ(x1,⋯, xn) = ∑
P∈Sn

Pψ(x1,⋯, xn)

= ∑
P∈Sn

P
⎛
⎝ ∑n1,⋯,nn

cn1,⋯,nnϕn1(x1)⋯ϕnn(xn)
⎞
⎠

= ∑
P∈Sn

cn1,⋯,nnϕn1(xP(1))⋯ϕnn(xP(n)).

The normalization of the states requires ψ(x1,⋯, xn) = 1√
n!
√
∏k nk! ∑P∈Sn

ϕn1(xP(1))⋯ϕnn(xP(n)).

7.3 Fermions
Fermions are particles described by an antisymmetric wave function ψ, which implies the fol-
lowing system:

ψ(x1,⋯, xn) = −Âψ(x1,⋯, xn) = − ∑
P∈Sn

sign(P)Pψ(x1,⋯, xn)

= − ∑
P∈Sn

sign(P)P
⎛
⎝ ∑n1,⋯,nn

cn1,⋯,nnϕn1(x1)⋯ϕnn(xn)
⎞
⎠

= − ∑
P∈Sn

sign(P)cn1,⋯,nnϕn1(xP(1))⋯ϕnn(xP(n)).

We recognize the expression of a determinant. If we also impose the normalization of the states,
we obtain:

ψ(x1,⋯, xn) =
1√
n!

RRRRRRRRRRRRRR

ϕn1(x1) ⋯ ϕnn(xn)
⋮ ⋮

ϕnn(x1) ⋯ ϕnn(xn)

RRRRRRRRRRRRRR
.

From properties of the determinant, it can be directly deduced that the fermion wave function
is identically zero if two one-particle wave functions are identical, meaning that two particles
cannot simultaneously be in the same state. This is known as the Pauli exclusion principle.
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7.3.1 Non-interacting Fermions:

In the particular case of a system of n identical non-interacting particles, the system is described
as a sum of n-particle Hamiltonians: Ĥ = ∑n

i=1 Ĥi, where Ĥi acts on coordinate i. Let ϕn be
the wavefunctions corresponding to the eigenstates of Ĥ and En the corresponding energies:
Ĥiϕn(xi) = Enϕn(xi). Since the particles are identical, all Ĥi are necessarily identical:

Ĥϕn1(x1)⋯ϕnn(xn) = (En1 +⋯ +Enn) (ϕn1(x1)⋯ϕnn(xn)) ,

and the sum of energies remains unchanged under coordinate permutations:

Ĥϕn1(xP(1))⋯ϕnn(xP(n)) = (En1 +⋯ +Enn) (ϕn1(xP(1))⋯ϕnn(xP(n))) .

In other words, we have the following equality:

ψ(x1,⋯, xn) = Ĥ
RRRRRRRRRRRRRR

ϕn1(x1) ⋯ ϕnn(xn)
⋮ ⋮

ϕnn(x1) ⋯ ϕnn(xn)

RRRRRRRRRRRRRR
= (En1 +⋯ +Enn)

RRRRRRRRRRRRRR

ϕn1(x1) ⋯ ϕnn(xn)
⋮ ⋮

ϕnn(x1) ⋯ ϕnn(xn)

RRRRRRRRRRRRRR
.

7.3.2 Exchange Terms:

Consider a two-fermion state:

ψ(x1, x2) =
1√
2
(ϕ1(x1)ϕ2(x2) − ϕ1(x2)ϕ2(x1))

with wave functions ϕ1 and ϕ2. The expectation value of any observable of the system is:

⟨ψ∣Ô∣ψ⟩ = ∫ dx1∫ dx2 (
1√
2
(ϕ1(x1)ϕ2(x2) − ϕ1(x2)ϕ2(x1)))

∗

Ô(x1, x2)

× ( 1√
2
(ϕ1(x1)ϕ2(x2) − ϕ1(x2)ϕ2(x1)))

= 1
2 ∫ dx1∫ dx2(ϕ∗1(x1)ϕ∗2(x2)Ô(x1, x2)ϕ1(x1)ϕ2(x2)

+ ϕ∗1(x2)ϕ∗2(x1)Ô(x1, x2)ϕ1(x2)ϕ2(x1)
− ϕ∗1(x1)ϕ∗2(x2)Ô(x1, x2)ϕ1(x2)ϕ2(x1)

− ϕ∗1(x2)ϕ∗2((x1)Ô(x1, x2)ϕ1(x1)ϕ2(x2)).

The last two terms are exchange terms.

7.4 Second Quantization:
Second quantization is an approach used to represent systems composed of multiple particles.
We consider a situation where the number of particles can potentially change, noting that a
particle’s state is entirely determined by the one-particle functions in the basis of H1. We
construct the Fock space where kets indicate the number of times a wave function is involved.
It’s worth noting that for bosons, the ni appearing in ∣n1, n2,⋯⟩ can be arbitrary, while for
fermions, they can only take the values 0 or 1 due to the Pauli exclusion principle.

We introduce creation and annihilation operators to increase or decrease the number of
particles. We distinguish between the cases where the particles are fermions or bosons:
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• Fermionic Case:

{ ĉ
†
i ∣n1,⋯, ni,⋯⟩ = (−1)n1+⋯+ni−1(1 − ni) ∣n1,⋯, ni + 1,⋯⟩ ,
ĉi ∣n1,⋯, ni,⋯⟩ = (−1)n1+⋯+ni−1ni ∣n1,⋯, ni − 1,⋯⟩ ,

Let’s define the anticommutator of two operators A and B: {A,B} = AB +BA. It can be
shown that creation and annihilation operators in the fermionic case satisfy:

– {ci, cj} = {c†
i , c

†
j} = 0

– {ci, c
†
j} = δij .

• Bosonic Case:
{ ĉ

†
i ∣n1,⋯, ni,⋯⟩ =

√
ni + 1 ∣n1,⋯, ni + 1,⋯⟩ ,

ĉi ∣n1,⋯, ni,⋯⟩ =
√
ni ∣n1,⋯, ni − 1,⋯⟩ ,

It can be shown that creation and annihilation operators in the bosonic case satisfy:

– [ci, cj] = [c†
i , c

†
j] = 0

– [ci, c
†
j] = δij .

We observe in the bosonic case an analogy with the results obtained in the study of the
harmonic oscillator.
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Chapter 8

Variational Principle

8.1 General Idea:
Consider a physical system described by a Hamiltonian Ĥ. LetH be the Hilbert space associated
with the system’s states and {ϕn} be an orthonormal basis of wave functions, with En as the
energies associated with the corresponding states. For any state ∣ψ⟩ of the system, the following
inequality, known as the variational principle, is always satisfied:

⟨ψ∣Ĥ ∣ψ⟩
⟨ψ∣ψ⟩ ≥ E0,

where E0 represents the energy of the system’s ground state. Furthermore, equality holds if
and only if ∣ψ⟩ = ∣ϕ0⟩, and ϕ0 is non-degenerate. We provide a proof of this fact in the discrete
case, and the continuous case easily follows by using properties of the integral. In the basis of
eigenstates, the system’s Hamiltonian is rewritten as Ĥ = ∑∞n=0En ∣ϕn⟩⟨ϕn∣, so:

⟨ψ∣Ĥ ∣ψ⟩ =
∞

∑
n=0

En ∣⟨ψ∣ϕn⟩∣2

≥ E0
∞

∑
n=0
∣⟨ψ∣ϕn⟩∣2

= E0
∞

∑
n=0
⟨ψ∣ϕn⟩⟨ϕn∣ψ⟩

= E0⟨ψ∣ψ⟩.

Idea: The previous relation will help us approximate the ground state. The method will be
as follows: we start by approximating a certain wave function corresponding to a state ∣ψ⟩, and
then we use the variational principle to find the parameter values that minimize ψ.

This method generalizes to excited states. For any ∣ψ⟩ ∈ H such that ⟨ϕ0∣ψ⟩ = 0, the following
inequality is always satisfied:

⟨ψ∣Ĥ ∣ψ⟩
⟨ψ∣ψ⟩ ≥ E1.

The proof of this fact is identical to the proof of the variational principle for the ground state
since the term involving ∣ϕ0⟩ drops out by the choice of ψ.
Example 8.1.1 (One-Dimensional Harmonic Oscillator). The system’s Hamiltonian is given by:

Ĥ = − h̵
2

2m
d2

dx2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=T̂

+ 1
2
mω2x2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=V̂

. (8.1)

88



CHAPTER 8. VARIATIONAL PRINCIPLE Quantum Physics II

We introduce a trial function ψa(x) = 1
x2+a

with a > 0. Note that this choice has no physical
validity since the solution should decrease exponentially at infinity. Let In = ∫ ∞−∞ dx 1

(x2+a)n
for

any n ∈N. We calculate:

I1 = ∫
+∞

−∞
dx

1
x2 + a =

1√
a

arctan( x√
a
)∣
∞

−∞

= π√
a
,

dIn

da
= −nIn+1.

Therefore I2 = π
2a
− 3

2 , I3 = 3π
8 a
− 5

2 et I4 = 5π
16a
− 7

2 . After repeated integration by parts, we find :

⟨ψ∣T̂ ∣ψ⟩ =
∞

∫
−∞

dx
1

x2 + a
d2

dx2
1

x2 + a =
1

x2 + a
d

dx

1
x2 + a ∣

∞

∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

−
∞

∫
−∞

( d
dx
− 1
x2 + a)

2
dx = −4(I3 − aI4) (−

h̵

2m
)

⟨ψ∣V̂ ∣ψ⟩ =
∞

∫
−∞

dx
x2

(x2 + a)4 = (I1 − aI2) (
1
2
mω2) et ⟨ψ∣ψ⟩ = I2.

The energy corresponding to a state ∣psia⟩ is given by

E(a) = ⟨ψa∣Ĥ ∣ψa⟩
⟨ψa∣ψa⟩

= h̵2

4m
1
a
+ 1

2
mω2a,

and we seek a such that the energy is minimal:

dE(a)
da

= 0 Ô⇒ 1
2
mω2a2 = h̵2

4m
Ô⇒ a = h̵

mω
√

2
.

The energy of the ground state is given by E( h̵
mω
√

2) =
h̵ω√

2 ≃ 0.72h̵ω. Note that the approximate
value is considerably higher than the exact (known in the case of the harmonic oscillator) ground
state energy: 0.72h̵ω > 0.5h̵ω.
Note 8.1.2. In our case, since we are approximating states, it is impossible to strictly impose
⟨ϕ0∣ψ⟩. If ∣ψ0⟩ is the approximation of the ground state, at best we have ⟨ψ0∣ψ⟩ = 0. This implies
the introduction of additional errors.
Example 8.1.3 (One-Dimensional Harmonic Oscillator:). Now, we want to determine the first
excited state of the one-dimensional harmonic oscillator. The Hamiltonian is still given by
equation 8.1. Let’s set ψa(x)) x

(x2+a)2 with a > 0. This function is odd under the inversion
x→ −x. Therefore, it will be orthogonal to the ground state ψ0(x), which is even.
Note 8.1.4. We have chosen to divide by (x2 + a)2 rather than (x2 + a2). This is due to the fact
that even if x/(x2 + a2) is square-integrable, the potential term would eventually diverge.

For the computation, we will need the following integrations :

I4 =
∞

∫
−∞

dx
1

(x2 + a)4 =
5π
16
a−7/2 I5 =

35π
128

a−9/2

J4 =
∞

∫
−∞

x2

(x2 + a)4 =
π

16
a−5/2 I6 =

63π
256

a−11/2

k4 =
∞

∫
−∞

dx
x4

(x2 + a)4 =
π

16
a−3/2
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Kinetic term:

⟨ϕa∣T̂ ∣ϕa⟩ = −
h̵2

2m

∞

∫
−∞

dx
x2

(x2 + a)2
d2

dx2
x2

(x2 + a)2 = ⋯

= h̵2

2m

∞

∫
−∞

dx( d
dx

x

(x2 + a)2)
2

= h̵2

2m

∞

∫
−∞

dx(− 1
(x2 + a)2 −

4x2

(x2 + a)3)
2

= h̵2

2m

∞

∫
−∞

dx(− 3
(x2 + a)2 +

4a
(x2 + a)3)

2

= h̵2

2m
(9I4 − 24aI5 + 16a2I6)

= h̵2

2m
(45π

16
− 105π

16
+ 63π

16
)a−7/2

= 3
16
π
h̵2

2m
a−7/2

Potential

⟨ϕa∣V̂ ∣ϕa⟩ =
1
2
mω2

∞

∫
−∞

dx
x4

(x2 + a)4

= 1
2
mω2k4

= π

32
mω2a−3/2

Finally, the norm is

⟨ϕa∣ϕa⟩ =
∞

∫
−∞

dx
x2

(x2 + a)2 = J4 =
π

16
a−5/2

E(a) = 1
2
(3h̵2

m
a−7/2 +mω2a−3/2) ⋅ (a−5/2)

−1

= 3 h̵
2

2m
1
a
+ 1

2
mω2a

dE(a)
da

= −3 h̵
2

2m
1
a2 +

1
2
mω2

dE(a)
da

= 0⇒ 3h̵2

2m
1
a2 =

1
2
mω2

⇒ a2 = 3h̵2

m2ω2

a = =
√

3 h̵

mω

E1(a) =
3h̵2

2m
mω

h̵
√

3
+
√

3
2
h̵ω

We find E(a) = 3h̵2

2ma +
1
2mω

2a and the minimization of the energy gives us a =
√

3 h̵
mω which

allows us to approximate the energy of the first excited state :

E1(a) =
√

3h̵ω ≃ 1,732h̵ω,
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which is much superior to the effective value, known of the energy of the first excited state of
the oscillator, that is Eeff

1 = 1,5h̵ω.
More generally, if one cannot use a symmetry argument, one can always seek a state ∣ϕ⟩ that

minimizes the energy expectation value, E = ⟨ϕ∣Ĥ ∣ϕ⟩ /⟨ϕ∣ϕ⟩ with the constraint ⟨ϕ∣ψ⟩ = 0, where
∣ψ⟩ is the variational solution found for the ground state. If ∣ψ⟩ is a good approximation, then
its component orthogonal to ∣0⟩ will be minimal. In this case, there is a high probability that
the variational solution ∣ϕ⟩ will be almost orthogonal to ∣0⟩ and will also provide a relatively
good approximation to ∣1⟩.
Note 8.1.5. Note that the variational approach makes error calculations extremely complicated:
finding a lower bound for the sought-after energy assumes that a better approximation to the
state is known, which makes any error calculation for the first approximation absurd. Further-
more, for any arbitrary wave function ψ, minimizing the error actually leads to restoring the
Schrödinger equation.

We can try to find the exact solution to the problem using the variational approach. Consider
a Hamiltonian Ĥ and an arbitrary state ψ(x). The energy expectation value is given by

E[ψ,ψ∗] = ⟨ψ∣Ĥ ∣ψ⟩ = ∫ dxψ∗Ĥψ

Since ψ is a complex-valued function, we consider E to be a function of ψ and ψ∗ (i.e., of R(ψ)
and I(ψ)).

Introduce an infinitesimal variation δψ∗(x) of ψ∗(x), with δψ∗(x) → 0. We are treating ψ
and ψ∗ as two independent variables, and thus

E[ψ,ψ∗ + δψ∗] = ∫ dxψ∗Ĥψ + ∫ dxδψ∗Ĥψ

and

δE = E[ψ,ψ∗ + δψ∗] −E[ψ,ψ∗] = ∫ dxδψ∗Ĥψ

It is necessary to introduce the concept of a functional derivative at this point. Alternatively,
we can imagine a function ψ "discretized" on a grid xj , j = −∞,⋯,1,2,⋯. In this case, we can
interpret this problem in a variational context with an infinite number of parameters δψ∗j =
δ∗(xj). This way, we recover the concept of a traditional derivative.

To minimize E, we need δE = 0. Now,

δE = ∫ dxδψ∗Ĥψ

In the discretized version,

δE = ∑
j

δψ∗j Ĥψj

and the (true) derivative of E with respect to ψ∗j is

∂E

∂ψ∗j
= Ĥψj

The minimization condition is then
∂E

∂ψ∗j
= 0 ∀j ⇒ Ĥψj = 0 ∀j ⇒ ψj = 0
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and similarly for ψ∗j .
This is a pathological result, explained by our omission of the norm constraint: we want

⟨ψ∣ψ⟩ = 1.
To find a constrained minimum, we use the Lagrange multipliers. We want to minimize

⟨ψ∣Ĥ ∣ψ⟩ with the constraint ⟨ψ∣ψ⟩ = 1. We introduce the functional

E[ψ,ψ∗, λ] = ∫ dxψ∗Ĥψ − λ(∫ dxψ∗ψ − 1)

As before:

δE = ∫ dxδψ∗Ĥψ − λ∫ dxδψ∗ψ

The condition δE = 0 for arbitrary variation δψ∗(x) implies equality of the integrands:

Ĥψ = λψ

It’s the Schrödinger equation! The variational principle, without additional conditions, should
lead to the exact solution of the problem.
Reminder 8.1.6. (Harmonic Oscillator) We have

Ĥ = p̂2

2m
+ 1

2
mω2x̂2

with [x̂, p̂] = ih̵. Let’s introduce

â† ≡
√
mω

2h̵
x̂ + i 1√

2mh̵ω
p̂

â ≡
√
mω

2h̵
x̂ − i 1√

2mh̵ω
p̂

x̂ =
√

h̵

2mω
(â + â†)

p̂ = i
√

mh̵ω

2
(â − â†)

We note
[â†, â] = â†â − ââ† = 1

Why is this commutator so important? Let’s try to define â† → 2â† and â→ 2â.
Note 8.1.7. If ∣ϕ⟩ such that ââ† ∣ϕ⟩ = λ ∣ϕ⟩ then

ââ†(â† ∣ϕ⟩) = (λ − 1)(â† ∣ϕ⟩)

the choice of â† and â ensures that ââ† is the operator N̂ , not αN̂ .
There is a ground state ∣ϕ0⟩ such that

â† ∣ϕ0⟩ = 0

Demo.

ââ† (â2 ∣ϕn⟩)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣ϕ0⟩

= (n − n)ân ∣ϕn⟩ = 0

∣∣ân+1 ∣ϕn⟩ ∣∣2 = 0
⇒ ân+1 ∣ϕn⟩ ∝ â† ∣ϕ0⟩ = 0
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The spectrum is
Ĥ ∣ϕn⟩ = h̵ω(n +

1
2
) ∣ϕn⟩

The norms are

â ∣ϕn⟩ =
√
n + 1 ∣ϕn+1⟩

â† ∣ϕn⟩ =
√
n ∣ϕn−1⟩

∣ϕn⟩ =
(â)n√
n!
∣ϕ0⟩

The {∣ϕn⟩} are non-degenerate, we thus have ⟨ϕi∣ϕj⟩ = δij .
Note 8.1.8.

⟨ϕn∣x̂∣ϕn⟩= ⟨ϕn∣ρ̂∣ϕn⟩ = 0

and

⟨ϕn∣x̂2∣ϕn⟩ = ⋯ =
h̵

2mω
(2n + 1)

⟨ϕn∣p̂2∣ϕn⟩ = ⋯ =
mh̵ω

2
(2n + 1)

for n = 0 we have ∆x̂∆p̂ = h̵
2

For a Harmonic oscillator in isotropic 3D, we have

Ĥ = ∣p̂∣
2

2m
+ 1

2
mω2 ∣̂r∣2

Note 8.1.9.

∣p̂∣2 = p̂2
x + p̂2

y + p̂2
z

∣x̂∣2 = x̂2 + ŷ2 + ẑ2

thus

Ĥ = Ĥx + Ĥy + Ĥz

Ĥ = p̂2
x

2m
+ 1

2
mω2x̂2

Ĥ =
p̂2

y

2m
+ 1

2
mω2ŷ2

Ĥ = p̂2
z

2m
+ 1

2
mω2ẑ2

Separable hamiltonian:
ψ(x, y, z) = ψn(x)ϕm(y)ξl(z)

where Ĥxψn(x) = Enψ(x), with En = h̵ω(n+
1
2
), similarly for ŷ and ẑ. Thus Ĥψ = Enmlψ, with

Enml = h̵ω(n +m + l +
3
2
) Why is the harmonic oscillator so important?
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1. Except for pathological cases, all systems admit a harmonic approximation.
Example 8.1.10. Central Potential We have

V = − h̵
2

2µ
∂2

∂r2 +
L2

2mr2 −
α

r

One could start from the solution of the harmonic problem and calculate more accurate
solutions using perturbation theory.

2. Quantum Field Theory for Multi-Body Systems. The state of a free particle with momen-
tum h̵k corresponding to one quantum of energy can be written as ∣1⟩. Thus, two particles
in the same state will have twice the energy, which can be understood as the state ∣2⟩
of the harmonic oscillator, and so on. The states of N free particles are described as an
infinite set of harmonic oscillators, one for each h̵k.
More formally, this result can be obtained from the consideration that the wave function
ψ(r) can be treated as a dynamic variable, and thus as an additional operator, denoted
by ψ̂ and ψ̂†. This procedure is called second quantization.

8.2 Hartree-Fock Theory
We consider a system of N spinless fermions. As in the previous chapter, we work within the
Hilbert space H1 of single-particle states, where the set {ϕni}Ni=1 represents an orthonormal basis
of single-particle wave functions. Under these considerations, any wave function for N particles
ψ can be expressed as:

ψ(x1,⋯, xN) =
1
N !

RRRRRRRRRRRRRR

ϕn1(x1) ⋯ ϕnn(xn)
⋮ ⋮

ϕnn(x1) ⋯ ϕnN
(xn)

RRRRRRRRRRRRRR
,

In light of the above, we can consider the ϕni as variational parameters. The Hartree-Fock
approximation involves representing the ground state as a single Slater determinant, so we need
to choose the ϕni that provide the best approximation.

The Hamiltonian of the system is given by Ĥ = T̂ + V̂ , where

• The operator T̂ is the total kinetic energy of the system, which is the sum of the kinetic
energies of the N particles:

T̂ =
N

∑
j=1

t̂j =
N

∑
j=1
− h̵

2m
∇2

j

• The operator V̂ represents the potential energy of the N particles, given as the sum of
potential energies of each pair of particles:

V̂ = ∑
i,j
i≠j

V̂i,j ,

where V̂i,j = V̂ (xi, xj).

We work within the Fock space. We have:

⟨ψ∣T̂ ∣ψ⟩ =
N

∑
j=1
⟨ϕnj ∣T̂ ∣ϕnj ⟩ =

N

∑
j=1
∫ dxϕ∗nj

(x)T (x)ϕnj(x), (8.2)
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and

⟨ψ∣V̂ ∣ψ⟩ = 1
2

N

∑
i,j=1
(⟨ϕniϕnj ∣V̂ ∣ϕniϕnj ⟩ − ⟨ϕniϕnj ∣V̂ ∣ϕnjϕni⟩) (8.3)

= 1/2
∑

N

i,j=1
∫ dx1dx2(ϕ∗ni

(x1)ϕ∗nj
(x2)V̂ (x1, x2)ϕni(x1)ϕnj(x2) (8.4)

− ϕ∗nj
(x1)ϕn∗i (x2)V̂ (x1, x2)ϕni(x1)ϕnj(x2)). (8.5)

The first term in the expression for ⟨ψ∣V̂ ∣ψ⟩ is called the "direct term," while the second is the
"exchange term."

The goal is to minimize ⟨ψ∣Ĥ ∣ψ⟩ = ⟨ψ∣T̂ ∣ψ⟩+⟨ψ∣V̂ ∣ψ⟩ subject to the n2 constraints: ⟨ϕni ∣ϕnj ⟩ =
δi,j . We use the theorem of constrained extrema:
Theorem 8.2.1 (Constrained Extrema). Seeking the extrema of a function F (x, y) under a
constraint f(x, y) = 0 is equivalent to searching for those of the function:

H(x, y, λ) = F (x, y) − λf(x, y).
Therefore, a priori, we should introduce n2 Lagrange multipliers. In fact, it can be shown

that λi,j = λ∗i,j .
We consider ϕ and ϕ∗ as independent variables. As an example, the variations with respect

to ϕ∗ni
yield:

δT̂ = δ
⎛
⎝∑j
∫ dxϕ∗nj

(x)t̂ϕnj(x)
⎞
⎠

= ∑
j
∫ dxδϕ∗nj

(x)t̂ϕnj(x).

Similarly, the variations in V̂ are:

δV̂ = ∑
j≠i
∫ dx1∫ dx2(δϕ∗ni

(x1)ϕ∗nj
(x2)V̂ ϕni(x1)ϕnj(x2)

− δϕ∗ni
(x2)ϕ∗nj

(x1)V̂ ϕni(x1)ϕnj(x2)).

and

δ∑
i,j

λi,j (⟨ϕni ∣ϕnj ⟩ − 1) = ∑
i,j

λi,j ∫ dxδϕ∗i (x)ϕj(x).

We want to minimize F = ⟨ψ∣Ĥ ∣ψ⟩−∑i,j λi,j (⟨ϕni ∣ϕnj ⟩ − 1) with respect to ϕni . We, therefore,
impose δF

δϕ∗ni

= 0 for all i, which leads to the equation:

t̂ϕni(x) +
N

∑
j=1
∫ dx2(ϕ∗nj

(x2)V̂ ϕni(x)ϕnj(x2) − ϕ∗nj
(x)V̂ ϕni(x)ϕnj(x2)) =

N

∑
j=1

λi,jϕnj(x). (8.6)

With no loss of generality λi,j = ϵiδi,j , we end up with the Hartree-Fock equation :

− h̵
2

2m
∇2ϕni(x) +

N

∑
j=1
∫ dx2(ϕ∗nj

(x2)V̂ ϕni(x)ϕnj(x2) − ϕ∗nj
(x)V̂ ϕni(x)ϕnj(x2)) = ϵiϕni(x).

(8.7)
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8.3 Hartree equation
The term directly from the potential 8.5 leads to the Hartree term in equation 8.7 :

V̂H(x)ϕni(x) ∶=
N

∑
j=1
∫ dx2ϕ

∗
nj
(x2)V̂ (x,x2)ϕnj(x2)ϕni(x).

In the Hartree-Fock equation, the term V̂H(x) can be interpreted as a mean-field term, i.e., a
potential of the form v̂(x1, x2) = e2

∣x1−x2∣
. Thus, we can rewrite the Hartree term as:

V̂H(x) =
N

∑
j=1
∫ dx2e

2 ∣ϕnj(x2)∣
2

∣x − x2∣

= ∫ dx2e
2∑

N
j=1 ∣ϕnj(x)∣

2

∣x − x2∣

= ∫ dx2e
2 ρ(x2)
∣x − x2∣

,

leading to the Hartree equation:

− h̵
2

2m
∇2ϕni(x) + V̂H(x)ϕni(x) = ϵiϕni(x). (8.8)

Note that the potential differs for each ϕi. The Hartree energy is given by:

E =
N

∑
i=1
⟨ϕni ∣t̂∣ϕni⟩ +

1
2∑i,j
⟨ϕniϕnj ∣v̂∣ϕniϕnj ⟩ (8.9)

=
N

∑
i=1
⟨ϕni ∣t̂∣ϕni⟩ +

1
2 ∫ dx1∫ dx2e

2 ρ(x1)ρ(x2)
∣x1 − x2∣

. (8.10)

It should be noted that the Hartree potential energy is a functional of the density ρ(x), as ρ
is a function of a single variable. If the exchange term is negligible, the initial N -body problem
reduces to a one-body problem.

8.4 Thomas-Fermi Approximation:
The goal is to approximate the total kinetic energy of the system using a "well-chosen" functional
of the density. We introduce

T T F (ρ(x)) = 3
5
h̵2

2m
(3π2)

2
3 ∫ d3xρ(x)

5
3

We want to minimize E(ρ(x)) subject to the constraint ∫ dx3ρ(x) = N , which leads to the
equation:

δ (E(ρ) − λ(∫ d3xρ(x) −N)) = 0,

from which we derive the Thomas-Fermi equation:

3
5
h̵2

2m
(3π2)

2
3 ∫ d3xρ(x)

5
3 + V (x) + e2∫ dx2

ρ(x)
∣x − x2∣

− µ = 0, (8.11)

where V (x) is an external potential.
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8.5 Density Functional Theory:
The Hohenberg-Kohn theorem generalizes the ideas from the previous sections:

Theorem 8.5.1 (First Hohenberg-Kohn Theorem). The energy E of the ground state of an
N -particle system defined by Ĥ is an unknown functional of the density ρ(x).

The Kohn-Sham theorem, formulated shortly after, allows reformulating the problem in
terms of a Fermi-Thomas expansion differential equation. For one-particle states ϕi(x):

(t(x) + V (x))ϕi(x) + VCE(x)ϕi(x) = ϵiϕi(x),

where VCE is the correlation and exchange potential, which is unknown.
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Chapter 9

Density Operator and Open
Quantum Systems

9.1 Density Operator:
Consider a system composed of two subsystems, A and B. Let {∣i⟩ , i ∈ N} be a basis of states
for A, and {∣µ⟩ , µ ∈ N} be a basis of states for B. An overall state ψ of this system can be
decomposed in the basis of the eigenstates of the subsystems as follows:

∣ψ⟩ = ∑
i,µ

αi,µ ∣i⟩⊗ ∣µ⟩ .

If Ô is an observable of the system A, then Ô⊗1B is an observable of the total system, and the
average value of Ô in the total space is given by:

⟨Ô⟩ = ⟨Ô ⊗ 1B⟩ = ⟨ψ∣ Ô ⊗ 1B ∣ψ⟩
= ∑

j,ν
∑
i,µ

α∗j,ναi,µ (⟨j∣ ⊗ ⟨ν∣) (Ô ∣i⟩) ⊗ (1B ∣µ⟩)

= ∑
j,ν
∑
i,µ

α∗j,ναi,µ ⟨j∣Ô∣i⟩ δµν

= ∑
i,j
∑
µ

α∗j,µαi,µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ρij

⟨j∣Ô∣i⟩

= ∑
i,j

ρij ⟨j∣Ô∣i⟩

= ∑
i,j

ρijÔji

= Tr(ρAÔ),

where the last equality is obtained by defining an operator ρA acting on subsystem A, and its
matrix in the chosen basis {∣i⟩ , i ∈N} is given by the coefficients

ρij = ∑
µ

α∗j,µαi,µ = ∑
µ

⟨iµ∣ψ⟩⟨ψ∣jµ⟩.

In other words, ρA takes the form:

ρA = ∑
i′,j′
∑
µ

∣i′⟩⟨i′∣ ⊗ ⟨µ∣ (∣ψ⟩⟨ψ∣) ∣j′⟩⊗ ∣µ⟩⟨j′∣ .
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This operator is called the density operator. Formally, it can be seen as the quantum physics
equivalent of phase space density. Note that since the trace of an operator is invariant under a
change of basis, the use of a density operator to calculate the average value of Ô does not depend
on the choice of the basis used to define this operator. Also, note that we have the following
properties:

Property 9.1.1. 1. The density operator is self-adjoint, that is to say, ρ†
A = ρA,

2. Tr(ρA) = ∑i ρii = ∑i,µ ∣αi,µ∣2 = ∥ψ∥2 = 1,

3. The density operator is positive semidefinite, i.e. ⟨ϕ∣ρA∣ϕ⟩ ≥ 0 for all ∣ϕ⟩ ∈ A.

Demo. 1. We have:

ρij = ∑
µ

α∗i,µαj,µ

ρji = ∑
µ

α∗j,µαi,µ

One should see that

ρij = ρji

2. We compute:

∑
i

ρii = ∑
i
∑
µ

α∗i,µαi,µ = ∑
i
∑
µ

⟨iµ∣ψ⟩⟨ψ∣iµ⟩

= ∑
i,µ

∣⟨iµ∣ψ⟩∣2

The ∣i⟩ and ∣µ⟩ form a basis of A and B, respectively. Thus, the sum over i and µ give the
norm of ∣ψ⟩, which is by definition normalized to 1.

3. We compute :

⟨ϕ∣ρA∣ϕ⟩ = ∑
i,j
∑
µ

⟨ϕ∣i⟩⟨j∣ϕ⟩⟨iµ∣ψ⟩⟨ψ∣jµ⟩

= ∑
µ

βµβ
∗
µ

= ∥β∥2 ≥ 0,

where βµ = ⟨ϕ∣i⟩⟨iµ∣ψ⟩

Notice that these properties imply, in particular:

• There exists a basis in which ρA is diagonal (from point 1),

• Furthermore, points 2 and 3 impose a particular form on the diagonal representation of
the operator ρA:

ρA = ∑
j

pj ∣j⟩⟨j∣ ,

where pj ≥ 0 and ∑pj = 1. Thus,

⟨Ô⟩ = Tr(ρAÔ) = ∑
j

pj ⟨j∣Ô∣j⟩ = ∑
j

pj ⟨Ô⟩∣j⟩ ,

where ⟨Ô⟩
∣j⟩

denotes the average value of Ô for the subsystem consisting of state ∣j⟩.
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So far, we have described the state of a system using an element ∣ψ⟩ from the Hilbert space.
Note that it is also possible to describe this state using the density operator ρ = ∣ψ⟩⟨ψ∣. A
density operator of this form is called a pure state of the system; otherwise, it is referred to as
a mixed state or statistical mixture.

In the case of a pure state, the average value of an observable Ô is given by:

⟨Ô⟩ = Tr(∣ψ⟩⟨ψ∣ Ô)
= ∑

i,µ

⟨i, µ∣ψ⟩ ⟨ψ∣Ô∣i, µ⟩

= ⟨ψ∣Ô∣∑
i,µ

i, µ⟩ ⟨i, µ∣ψ⟩

= ⟨ψ∣Ô∣ψ⟩ .

Furthermore, if a density operator describes a pure state, then it is a projector, i.e., ρ2 = ρ. In
fact, the two properties are equivalent: if ρ2 = ρ, the eigenvalues of the density operator must
necessarily be 0 or 1. But since the sum of the eigenvalues of a density operator must be equal
to 1, there must be a single eigenvalue of the density operator that equals 1, and it is unique.
Let ∣ψn⟩ be the associated eigenstate. We have ρ = ∣ψn⟩⟨ψn∣.

In this chapter, we have introduced 2 density operators, ρA ∶ HA → HA and ρ ∶ HA ⊗HB →
HA ⊗HB, is there a link between them? We will show ρA = TrB(ρ).

Demo. We have
ρ = ∣ψ⟩⟨ψ∣ = ∑

iµ;jν

αiµα
∗
jν ∣iµ⟩⟨jν∣

But ρiµ,jν = αiµα
∗
jν . By definition

ρA = ∑
µ

αiµα
∗
jν

thus, defining
TrB(ρ) = ∑

µ′
⟨µ′∣ρ∣µ′⟩

We have

∑
ij
∑
µ

αiµα
∗
jν ∣i⟩⟨j∣ = ∑

µ′
∑

iµ,jν

αiµα
∗
jνδµµ′δνµ′ ∣i⟩⟨j∣

= ∑
µ′
∑

iµ,jν

αiµα
∗
jν ⟨µ′∣ (∣i⟩⊗ ∣µ⟩)(⟨j∣ ⊗ ⟨ν∣) ∣µ′⟩

= ∑
µ′
⟨µ′∣ρ∣µ′⟩ = TrB(ρ) = ρA

Example 9.1.2. Consider a state ∣ψ⟩ = α ∣00⟩+ β ∣01⟩+ γ ∣10⟩+ δ ∣11⟩. We have:

ρ = ∣ψ⟩⟨ψ∣ =
⎛
⎜⎜⎜
⎝

∣α∣2 α∗β α∗γ α∗δ
β∗α ∣β∣2 β∗γ β∗δ
γ∗α γ∗β ∣γ∣2 γ∗δ
δ∗α δ∗β δ∗γ ∣δ∣2

⎞
⎟⎟⎟
⎠
,

and
ρA = TrB(ρ) = ∑

x=0,1
⟨x∣ψ⟩⟨ψ∣x⟩ = ( ∣α∣

2 + ∣β∣2 α∗γ + β∗δ
β∗α + γ∗β ∣γ∣2 + ∣δ∣2 ) .
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9.2 Time Evolution:

Let’s consider a density operator in diagonal form at t = 0:

ρ(t = 0) = ∑
j

αj ∣ψj(0)⟩⟨ψj(0)∣

We are interested in determining the laws governing its time evolution. We assume that the
statistical mixture does not change over time. In other words, αi does not depend on t, and

ρ(t) = ∑
j

αj ∣ψj(t)⟩⟨ψj(t)∣ .

The time evolution of a state has already been characterized as:

∣ψj(t)⟩ = e−i Ĥt
h̵ ∣ψj(0)⟩

Using these two equations, we obtain:

ρ(t) = ∑
j

αje
−i Ĥt

h̵ ∣ψj(0)⟩⟨ψj(0)∣ e−i Ĥt
h̵

We differentiate:

∂ρ

∂t
= ∑

j

αj (−i
Ĥ

h̵
) e−i Ĥt

h̵ ∣ψj(0)⟩⟨ψj(0)∣ e−i Ĥt
h̵

+∑
j

αje
−i Ĥt

h̵ ∣ψj(0)⟩⟨ψj(0)∣ (i
Ĥ

h̵
) e−i Ĥt

h̵

= (−iĤ
h̵
)ρ + ρ(iĤ

h̵
)

which leads to the equation:

ih̵
∂ρ

∂t
= −[Ĥ, ρ], (9.1)

describing the time evolution of the density operator. Note that ρ does not define an observable
physical quantity!
Examples 9.2.1. 1. Consider the Hilbert space of states {∣−⟩ , ∣+⟩}. The operator Ŝz acts on

this basis as Ŝz ∣+⟩ = h̵
2 ∣+⟩ and Ŝz ∣−⟩ = − h̵

2 ∣−⟩. The state ∣ψ⟩ = ∣+⟩ is a pure state of the
system, and the corresponding density operator ρ is given by:

ρ = ∣ψ⟩⟨ψ∣ = (0 0
0 1) .

2. Now, consider the Hilbert space composed of eigenstates of the x-component of spin:
{∣+⟩

x
, ∣−⟩

x
}. We have Ŝx ∣+⟩x =

h̵
2 ∣+⟩x and Ŝx ∣−⟩x = −

h̵
2 ∣−⟩x. Furthermore:

∣+⟩
x
= ∣+⟩+ ∣−⟩√

2
, and ∣−⟩

x
= ∣+⟩− ∣−⟩√

2
.
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The states ∣ψ⟩ = ∣±⟩
x

are pure states, and the corresponding density operator is given by:

ρ = ∣±⟩
x
⟨±∣

x
= 1

2
(∣+⟩

x
± ∣−⟩

x
) (⟨+∣

x
± ⟨−∣

x
) .

In the basis {∣+⟩ , ∣−⟩}, the operator ρ is written as:

ρ = (
1
2 ±1

2
±1

2
1
2
) .

3. What would be the density operator associated with a statistical mixture composed of

50% of ∣+⟩ and 50% of ∣−⟩? We have ρ = 1
2 ∣+⟩⟨+∣ +

1
2 ∣−⟩⟨−∣ = (

1
2 0
0 1

2
) .

4. Bell States: ψ = 1√
2 (∣01⟩− ∣10⟩). In the basis of states {∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩}, the density

operator ρ = ∣ψ⟩⟨ψ∣ is given by:

ρ = 1
2

⎛
⎜⎜⎜
⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

Additionally,

ρA = TrB(ρ) =
1
∑
j=0

B ⟨j∣ρ∣j⟩B =
1
2
(1 0
0 1) .

and
ρB = TrA(ρ) =

1
∑
j=0

A ⟨j∣ρ∣j⟩A =
1
2
(1 0
0 1) .

What would be the density matrix of a union of two systems? Naively, we might want to
write ρ = ρA ⊗ ρB. After calculations, we obtain:

TrB ρA ⊕ ρB = ρA

and
TrA ρA ⊕ ρB = ρB.

In the case of a pure state ∣ψ⟩ = ∣ψA⟩⊗ ∣ψB⟩, we can write ρA = ∣ψA⟩⟨ψA∣ and ρB = ∣ψB⟩⟨ψB ∣.
We indeed have ρ = ∣ψ⟩⟨ψ∣ = ρA ⊗ ρB.

In fact,

ρ = ∣ψ⟩⟨ψ∣ = (∣ψA⟩⊗ ∣ψB⟩)(⟨ψA∣ ⊗ ⟨ψB ∣) = ∣ψA⟩⟨ψA∣ ⊗ ∣ψB⟩⟨ψB ∣ = ρA ⊗ ρB

ρ = ∣ψ⟩⟨ψ∣ = (∣ψA⟩⊗ ∣ψB⟩)(⟨ψA∣ ⊗ ⟨ψB ∣) = ∣ψA⟩⟨ψA∣ ⊗ ∣ψB⟩⟨ψB ∣ = ρA ⊗ ρB

given the properties of the tensor product.
But as soon as there is entanglement, things become more complicated: let’s revisit the

example of the Bell state and consider the state ψ = ∣01⟩−∣10⟩
√

2 . If indeed we had ρ = ρA⊗ ρB, then
the density operator should be of the form:

ρ = 1
4

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠
,
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which contradicts the results obtained in the example above.
In fact, given the density matrices of two systems once they come into contact, it is a priori

impossible to access the density operator of the total system.
Examples 9.2.2 (Quantum Bits). 1. Systems with a single quantum bit: We consider a state

∣ψ⟩ = λ ∣0⟩+µ ∣1⟩, where ∣λ∣2 + ∣µ∣2 = 1. As seen previously, the density matrix of the system
is given by:

ρA = ∣ψ⟩⟨ψ∣ = (
∣λ∣2 µ∗λ
λ∗µ ∣µ∣2) ,

We notice that in the case of a pure state, the density matrix provides the maximum
information about the system.

2. Systems with two quantum bits: We consider a system composed of two subsystems with
a single quantum bit A and B.

• We are interested in the density matrix associated with the state ∣ψ⟩ = ∣ϕA⟩ ⊗ ∣ϕB⟩,
where ∣ψA⟩ = λ ∣0A⟩ + µ ∣1A⟩ and ∣ψB⟩ = χ ∣0B⟩ + β ∣1B⟩. The matrix ρA has been
determined in the previous section:

ρA = ∣ψ⟩⟨ψ∣ = (
∣λ∣2 µ∗λ
λ∗µ ∣µ∣2) ,

and ρA ⊗ ρB is a 4 × 4 matrix consisting of blocks:

ρA ⊗ ρB = ∣ψ⟩⟨ψ∣ = (
∣λ∣2ρB µ∗λρB

λ∗µρB ∣µ∣2ρB
) ,

• Now, if we consider the state ∣ψ⟩ = λ ∣00⟩+ µ ∣11⟩. The density matrix is given by:

ρ = ∣ψ⟩⟨ψ∣ =
⎛
⎜⎜⎜
⎝

∣λ∣2 0 0 µ∗λ
0 0 0 0
0 0 0 0
λ∗µ 0 0 ∣µ∣2

⎞
⎟⎟⎟
⎠
,

and ρA = TrB(ρ) = (
∣λ∣2 0
0 ∣µ∣2) . Thus, the average value of any observable of the

system satisfies:
⟨Ô⟩ = ∣λ∣2 ⟨Ô⟩0 + ∣µ∣

2 ⟨Ô⟩1 .
We are interested in the temporal evolution of a system composed of two subsystems, A and

B, described by Hamiltonians ĤA and ĤB, such that Ĥ = ĤA ⊗ 1B + 1A ⊗ ĤB = ĤA ⊕ ĤB. In
other words, the two subsystems do not interact with each other. The time evolution operator
is given by:

Û(t, t′) = ei
(ĤA⊕ĤB)(t−t′)

h̵ = ÛA ⊗ ÛB, (9.2)

so any state of the system, denoted as ∣ψ(t)⟩ = ∣ψA(t)⟩ ⊗ ∣ψB(t)⟩, will evolve according to the
equation:

∣ψ(t)⟩ = ∣ψA(t)⟩⊗ ∣ψB(t)⟩ = (ÛA ⊗ ÛB) (∣ψA(t)⟩⊗ ∣ψB(t)⟩) .

Example 9.2.3 (Decoherence and Pointer States). Consider a system S interacting with an envi-
ronment E. Decoherence is the manifestation of this interaction. This interaction favors certain
states, known as "pointer states," which are not affected by decoherence, regardless of the initial
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state of the system. In fact, equation 9.2 suggests that the interaction will favor the eigenstates
of the system since these states remain factorized over time, with the environment not acting
on the system. However, the state of the environment evolves because the system interacts
with the environment. For example, if a system composed of a quantum bit interacts with the
environment, let {∣0⟩ , ∣1⟩} be the pointer states of the system and ∣0E⟩ be the initial state of the
environment. Suppose the time evolution is given by:

∣0⟩⊗ ∣0E⟩ → ∣0⟩⊗ ∣1E⟩ ,

∣1⟩⊗ ∣0E⟩ → ∣0⟩⊗ ∣2E⟩ .

Suppose that after a time interval ∆t, a transition occurs with probability p, meaning that after
a time interval ∆t:

∣00E⟩ →
√

1 − p ∣00E⟩+
√
p ∣01E⟩ ,

∣10E⟩ →
√

1 − p ∣10E⟩+
√
p ∣12E⟩ .

If the system is in the state ∣ψ⟩ = λ ∣0⟩+µ ∣1⟩ at time t = 0, then after a time ∆t, it will be in the
state:

∣ψ⟩ = λ
√

1 − p ∣00E⟩+ λ
√
p ∣01E⟩+ µ

√
1 − p ∣10E⟩+ µ

√
p ∣12E⟩ .

The density matrix at the step ∆t is given by:

ρS = TrE(ρ) = (
∣λ∣2 µ∗λ(1 − p)

λ∗µ(1 − p) ∣µ∣2 ) .

After n time steps of ∆t:

ρS = TrE(ρ) = (
∣λ∣2 µ∗λ(1 − p)n

λ∗µ(1 − p)n ∣µ∣2 ) ,

so that
lim
t→∞

ρS = (
∣λ∣2 µ∗λe−Γt

λ∗µe−Γt ∣µ∣2 ) ,

where Γ = np.
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Chapter 10

Elements of Quantum Information

Computers are fundamentally machines based on physical processes. The physics of these sys-
tems is governed by the laws of quantum mechanics. One can thus consider every computer
as being "quantum." In reality, this is not the case: their operations can be ideally described
by elements of classical physics. For example, Alan Turing constructed a basic computer, the
Turing machine, using mechanical components (and following purely classical considerations).

A genuinely quantum computer fully utilizes specifically quantum phenomena (such as en-
tanglement) that have no classical equivalent.

During the 1970s, the issue of reversibility is addressed: a logical operation (such as XOR)
is irreversible.

p q XOR

0 0 0
0 1 1
1 0 1
1 1 1

Table 10.1: Truth Table for XOR Operation

Indeed, it is impossible to determine from an output XOR(p, q) = 1 whether (p, q) = (0,1)
or (p, q) = (1,0). Thus, this operation dissipates energy. In fact, there are 4 possible input
combinations for 2 possible output combinations. Entropy, quantifying the unknown information
about the system’s state, is given, for N possible combinations, by:

S = kB lnN

Consider, for example, a system S consisting of a box containing a gas consisting of a single
particle.

a

S

b

Figure 10.1: System composed of a box with gas (a) when this gas can fill the box, (b) when
the box is split in 2 and the gas is restrained.
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If we consider this system to be isolated, then from (a) to (b), the gas has lost half of its
configurations, i.e., the particle has only half of the available positions. Assuming an isothermal
process:

δS = −kB ln 2

δF = δU − δST isothermal⇒ δU = 0

δU ⇒ same velocity

However, the entropy of an isolated system cannot decrease. If we have δS = −kB ln 2 for a
XOR, it’s because it’s not isolated: it dissipates heat into a thermal bath, causing the entropy
of the thermal bath to increase by δS = kB ln 2 (still assuming an isothermal process). Thus:

∆Udissipated ≥ kBT ln 2

In practice, we are still far from this limit. However, it’s possible to completely overcome this
by using reversible logic gates. That’s why we consider quantum mechanics here. In an isolated
system, the operations are given by the unitary time evolution:

Û(t, t′) = e−
iĤ(t−t′)

h̵

which is unitary and, therefore, reversible.
Feynman became interested in this problem in the early 1980s (see the book "Lectures on

Computation"). He immediately recognized an opportunity in quantum mechanics.
Consider N classical particles with positions (r1,⋯, rN). The equations of motion are given

by r̈j = Fj(r1,⋯, rN) or
⎧⎪⎪⎨⎪⎪⎩

ṙj = vj

v̇j = Fj(r1,⋯, rN)

resulting in 6N coupled differential equations. Simulating this system involves discretization:
dt → ∆t and ∆xj = ∆tFj(r1,⋯, rn). Typically, Fj(r1,⋯, rN) = ∑k≠j F (xj , xk). The algorithm
thus requires two loops, one over the index j and another over the index k, leading to a number
of operations in O(N2) per ∆t.

Now consider a quantum system of N particles characterized by the wave function Ψ(r1,⋯, rN , t)
and the evolution equation:

ih̵
∂Ψ
∂t
=HΨ

For the numerical simulation of this system, it’s necessary to discretize time as well as space.
Let’s assume a spatial grid of M cells. For 3N coordinates, we have (M)3N elements. So, the
matrix Ĥ has a size of (M)3N × (M)3N . Matrix-vector multiplication is performed in O(N2)
operations, which results in a number of operations in O((M)6N), which means exponential
complexity!

So, we go from a tractable algorithm (N2) to an intractable one (constN ).
Feynman sees this limitation as an opportunity, through the following reflection: a classical

computer takes time T = O(∆t ⋅ constN) to simulate this system, while nature takes time T =
O(∆t)! Nature can solve an intractable problem for classical computers with zero complexity.

If we could redefine all numerical problems in terms of e− iĤt
h̵ , we would have access to a

very powerful universal computer (even if we had to build a system that behaves according to
the desired Ĥ). Currently (in 2020), this has not yet been fully realized, but some specific
algorithms have been discovered (Deutsch, Shor, Grover, etc.).
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10.1 Mathematical Formulation of the Qubit
A quantum bit or "qubit" is a "two-level" quantum system. This simply means that the states
are defined in a 2-dimensional Hilbert space.

We choose a canonical basis, which we call the "computational basis," denoted by {∣0⟩ , ∣1⟩} ≡
H1.

Notice the analogy between classical computing bits and qubits. However, qubits have a
fundamental difference. While classical bits can take the values 0 or 1, qubits can take values

∣Ψ⟩ = α ∣0⟩+ β ∣1⟩ , α, beta ∈ C

with ∣α∣2 + ∣β∣2 = 1. Then, we can construct multi-qubit states. For N qubits, the space is given
by

HN = H1 ⊗⋯⊗H1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N times

For two qubits, for example, the space is then

H2 = {∣0⟩⊗ ∣0⟩ , ∣0⟩⊗ ∣1⟩ , ∣1⟩⊗ ∣0⟩ , ∣1⟩⊗ ∣1⟩} = {∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩}

and the state of these two qubits is given by

∣Ψ⟩ = α ∣00⟩+ β ∣01⟩+ γ ∣10⟩+ δ ∣11⟩

with ∣α∣2 + ∣β∣2 + ∣γ∣2 + ∣δ∣2 = 1
In practice, to realize a qubit, we look for a physical system that is completely characterized

by two states (or by a system with two energy states sufficiently separated from all others, so
that the influence of the others is negligible, an influence calculated according to perturbation
theory). The two main candidates for this practical realization of a qubit are currently the
electron’s spin and the photon’s polarization. We can also consider a pair of atomic levels, the
collective state of a supercurrent in a superconductor.

10.2 Quantum Operation
In the field of quantum information, systems are idealized: it is assumed that the only evolution
is unitary, governed by the Hamiltonian

∣Ψ(t)⟩ = Û(t, t′) ∣Ψ(t′)⟩

Û(t, t′) = e−i
Ĥ(t−t′)

h̵

Certain phenomena are thus neglected, such as interaction with the environment and decoher-
ence, for example.

For a system of N qubits, a quantum operation can be illustrated by a quantum circuit:

U

Each line represents the state of a qubit. This representation is due to the fact that a unitary
operation U is completely defined (by linearity) by its action on the elements of the basis of
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HN . Knowing how U acts on ∣α1,⋯, αN ⟩, where αi = 0,1, is enough to define U completely. For
example, consider the NOT gate:

X

which can be rewritten in vector form with ∣0⟩ = (10) and ∣1⟩ = (01):

X = (0 1
1 0)

(which is also the Pauli matrix σx). This gate maps ∣0⟩ (∣1⟩) to ∣1⟩ (∣0⟩). Its action on an arbitrary
state ∣Ψ⟩ follows from linearity.

10.3 Useful quantum gatesr

10.3.1 1 qubit

X X X = σx = (
0 1
1 0)

Y Y Y = σy = (
0 −i
i 0 )

Z Z Z = σz = (
1 0
0 −1)

Hadamard H H = (1 1
1 −1)

Phase S S = (1 0
0 i
)

π
8 T T = (1 0

0 eiπ/4) = eiπ/8 (e
−iπ/8 0
0 eiπ/8)

10.3.2 2 qubits

CNOT
●

CNOT =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

C −U
general controled gate

●
U

∣c⟩⊗ ∣x⟩ → ∣c⟩⊗U c ∣x⟩

C −Z
example of controled gate

●
Z

C −Z =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

All quantum circuits can be constructed using sequences of H, S, T , and CNOT gates; however,
this takes exponential time. Some algorithms, on the other hand, do not require a complex
architecture and are, therefore, very efficient.

However, there is still no quantum Turing machine: it is currently impossible to systemati-
cally express every algorithm in quantum terms to achieve efficiency gains.
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10.4 Deutsch’s Algorithm

Consider a quantum gate Uf

∣x⟩
Uf

∣x⟩
∣y⟩ ∣y ⊕ f(x)⟩

where ∣x⟩ and ∣y⟩ represent one qubit each, f(x) is a Boolean function, and ⊕ denotes
modulo-2 addition.

We want to determine whether f(x) is constant or balanced, meaning either f(1) = f(0) or
f(1) ≠ f(0), respectively. Classically, it is necessary to evaluate the function twice to determine
this. Deutsch’s algorithm allows us to know this characteristic in a single evaluation.

Consider the circuit:

∣0⟩ H
Uf

H ∣ϕ⟩

∣1⟩ HÕ××
Õ××

Õ××
Õ××

∣ψ0⟩ ∣ψ1⟩ ∣ψ2⟩ ∣ψ3⟩

Where H is the Hadamar gate, which sends ∣0⟩ → ∣0⟩+∣1⟩
√

2 , and ∣1⟩ → ∣0⟩−∣1⟩
√

2 , ∣ψ0⟩ the initial
state, the ∣ψ1⟩, ∣ψ2⟩, ∣ψ3⟩ the intermediary states, and ∣ϕ⟩ the final state of the first registry. The
final state of the second registry is not presented. let us detail the intermediary states. Firstly

∣ψ0⟩ = ∣0⟩⊗ ∣1⟩ =∣0,1⟩ ,

and

∣ψ1⟩ = (H ⊗H) ∣ψ0⟩ = (H ⊗H) ∣0⟩⊗ ∣1⟩
= (H ∣0⟩) ⊗ (H ∣1⟩)

= (∣0⟩+ ∣1⟩√
2
) ⊗ (∣0⟩− ∣1⟩√

2
) ,

Before computing ∣ψ2⟩ = Uf ∣ψ1⟩, we should note that

Uf ∣x⟩⊗ (
∣0⟩− ∣1⟩√

2
) = ∣x⟩⊗ (∣f(x)⟩− ∣1⊕ f(x)⟩√

2
)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣x⟩⊗ (∣0⟩− ∣1⟩√
2
) if f(x) = 0

∣x⟩⊗ (∣1⟩− ∣0⟩√
2
) if f(x) = 1

= ∣x⟩⊗ (−1)f(x) (∣0⟩− ∣1⟩√
2
)

= (−1)f(x) ∣x⟩⊗ (∣0⟩− ∣1⟩√
2
) ,

where the last step follows from linearity of the tensor product and shows that the action of the
operator on 2 qubits is essential to the algorithm.
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From the following relation,

∣ψ2⟩ = Uf ∣ψ1⟩ = Uf (
∣0⟩+ ∣1⟩√

2
) ⊗ (∣0⟩− ∣1⟩√

2
)

= ((−1)f(0) ∣0⟩+ (−1)f(1) ∣1⟩√
2

) ⊗ (∣0⟩− ∣1⟩√
2
)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−1)f(0) (∣0⟩+ ∣1⟩√
2
) ⊗ (∣0⟩− ∣1⟩√

2
) if f(0) = f(1)

(−1)f(0) (∣0⟩− ∣1⟩√
2
) ⊗ (∣0⟩− ∣1⟩√

2
) if f(0) ≠ f(1) .

Which finally leads to

∣ψ3⟩ = (H ⊗ 1) ∣ψ2⟩

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−1)f(0) ∣0⟩⊗ (∣0⟩− ∣1⟩√
2
) if f(0) = f(1)

(−1)f(0) ∣1⟩⊗ (∣0⟩− ∣1⟩√
2
) if f(0) ≠ f(1)

= (−1)f(0) ∣f(0) ⊕ f(1)⟩⊗ (∣0⟩− ∣1⟩√
2
) .

We only need then to execute a measure on the first qubit of an observable that is diagonal
in the computational basis {∣0⟩, ∣1⟩}. The result of such a measure will tell us with certainty if
f(x) is constant or balanced.
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Chapter 11

EPR Paradox, Bell’s Theorem, and
Quantum State Interpretation

The absence of determinism in the quantum measurement process posed a major problem of
interpretation in the decades following the birth of the theory.

According to a classical idea, the measurement process merely reveals a pre-existing value of
a physical quantity. The doctor measuring blood pressure is simply discovering the value, which
existed independently and was the cause of the patient’s discomfort.

Without delving into the technical details of the measurement process (which, in principle,
should be designed with minimal interaction with the system to avoid influencing it), it could be
possible to establish the principle that the value of a physical quantity represents an "element of
objective reality" if it can be measured with a probability of 1 through a measurement process.
This value should, therefore, be pre-existing and independent of the measurement process. A
complete quantum theory should then, in describing this phenomenon, predict this value with
probability 1.

Unfortunately, orthodox quantum physics, as it is taught, does not meet these simple crite-
ria. In particular, given an observable Â, a self-adjoint operator in the Hilbert space H, with
eigenvalues {an}, and eigenstates ∣an⟩, the result of a measurement of Â fulfills the above criteria
only for a system already in a state ∣an⟩, with eigenvalue an. However, for any arbitrary state
∣Ψ⟩, the value obtained from the measurement of Â is not pre-existing and cannot be predicted
with certainty by the theory. In such a quantum state, the value of Â is not an "element of
objective reality." One might attempt to circumvent the problem by restricting the consideration
to the ∣an⟩ states alone. But this is not a solution because if two observables Â and B̂ have
[Â, B̂] ≠ 0, then a system in an eigenstate of Â is undetermined when measured by B̂. If Â is
therefore an "element of objective reality," then B̂ is not.

It could be argued that the measurement process in quantum physics generally has a neg-
ligible influence on the system, and therefore, it can never be reduced to the classical idea of
measurement.

To address this question, Albert Einstein, Boris Podolsky, and Nathan Rosen published their
famous article titled Can Quantum-Mechanical Description of Physical Reality Be Considered
Complete? in 1935. This is Einstein’s most cited paper with over 12,000 citations on Google
Scholar. The EPR argument aims to show that — under certain assumptions — orthodox
quantum mechanics must be incomplete and, in particular, the results of measurements must
preexist, contrary to the principles of orthodox quantum mechanics. The assumptions of the
EPR paradox play a very important role. They are:

1. Exact correlations between measurements of two subsystems in a specific state (referred
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to as an entangled state hereafter).

2. The impossibility, through a measurement performed on one subsystem, of influencing the
state of another subsystem sufficiently far away (the locality assumption).

To illustrate the EPR paradox, an example of an entangled state corresponding to the first
assumption must be introduced. Historically, the EPR paper introduced a state describing two
particles, given by the wave function

Ψ(x1, x2) = ∫
∞

−∞
e

2πi
h̵
(x1−x2+x0)pdp = h̵δ(x2 − x1 + x0)

This is a state for which the distance between the two particles is certain and given by x0. The
idea is to choose x0 large enough so that two measurements performed on the two particles at
a sufficiently short time interval cannot influence each other through an interaction. This state
can also be expressed as

∣Ψ(x1, x2)⟩ = ∫
∞

−∞
dpe

2πi
h̵

x1pe
−2πi

h̵
(x2−x0)p = ∫

∞

−∞
dpe

2πi
h̵

x0 ∣p⟩1 ⊗ ∣−p⟩2

This expression can be interpreted as a linear superposition (with constant probability) of states
where both particles propagate with equal and opposite momenta.

p−p

p

−p

p

−p

There exists a version of this example due to Bohr, simple and more modern, using the spin
state of two spin-1

2 particles.

∣Ψ⟩ = 1√
2
(↑ ⊗ ↓ + ↑ ⊗ ↓)

Here, ↑ and ↓ are, for example, the eigenstates of Ŝz. This is the singlet state, i.e., the
eigenstate of Ŝ2 (Ŝ = Ŝ1 + Ŝ2) with eigenvalue S = 0. Note the analogy with the original EPR
state: both are superpositions of states produced with opposite eigenvalues.

The state ∣Ψ⟩ has another important characteristic. Let’s apply a change of basis in the
Hilbert space of each spin using a unitary matrix:

Ô = (α β
γ δ

) ↑= α ↑′ +β ↓′
↓= γ ↑′ +δ ↓′

This change corresponds to transitioning from the basis of eigenstates of Ŝz to the basis of
eigenstates of n̂ ⋅ Ŝ, where n̂ is arbitrary. Replacing these expressions in ∣Ψ⟩ and after some
simple algebraic calculations, we find (with a negligible global phase factor):

∣Ψ⟩ ≡ 1√
2
(↑′ ⊗ ↓′ − ↓′ ⊗ ↑′)

where we used the property of the unitary matrix:

∣detU ∣ = ∣αδ − γβ∣ = 1

112



CHAPTER 11. EPR PARADOX, BELL’S THEOREM, AND QUANTUM STATE
INTERPRETATION Quantum Physics II

So, the state has exactly the same form regardless of the chosen basis. This property is not
required for the EPR argument, but it simplifies the task.

Let ∣Ψ⟩ be a non-separable state, meaning it cannot be written as a tensor product of two
states defined in the respective Hilbert spaces of the two isolated particles:

∣Ψ⟩ ≠ ∣Ψ1⟩⊗ ∣Ψ2⟩

The condition of non-separability is essentially at the core of the concept of quantum entan-
glement.

Another important characteristic is the correlation between measurements performed on the
two subsystems. Imagine two distant particles. Two observers, Alice and Bob, each operate a
Stern-Gerlach device, which includes a magnet generating a non-uniform magnetic field capable
of deflecting opposite spin particles in opposite directions. The orientation of field B defines the
spin orientation of the observable. This device allows Alice and Bob to measure the spin Ŝz of
their respective particles.

Alice measures first. If she obtains Sz = + h̵
2 , then, according to orthodox quantum mechanics,

she will have projected the system onto the projector

∣↑⟩⟨↑∣ ⊗ I

The state will, therefore, be projected as

∣Ψ⟩ → ∣↑⟩⊗ ∣↓⟩

In this state, a measurement of Ŝz by Bob on the other particle will give Sz = − h̵
2 with certainty.

On the contrary, if Alice measures Sz = − h̵
2 , Bob will measure Sz = + h̵

2 with certainty.
Imagine the experiment is repeated several times on the same state ∣Ψ⟩. The results of

Alice and Bob will be strictly random but always entirely correlated. This correlation exists
independently of the axis along which Alice and Bob make their measurements. Indeed, we have
seen that ∣Ψ⟩ takes exactly the same form when written in terms of the eigenstates of n̂ ⋅ ∣Ŝ⟩ with
an arbitrary ∣n⟩.

The EPR correlation is explained by orthodox quantum mechanics but also by a purely
"realistic" hypothesis that assumes the values of Sz1 and Sz2 existed prior to the measurement.

Imagine a third actor, Charlie, who prepares pairs of beads - one white and one black - and
then places each in a box, randomly sending one box to Bob and the other to Alice. Upon
opening their boxes, they will find a white or black bead at random, but always of the opposite
color to the other.

The EPR argument maintains that after Alice’s measurement, the second assumption in the
EPR paper and Bob’s great distance ensure the impossibility of any influence from Alice’s mea-
surement on Bob’s particle. According to EPR, the only possible explanation for the correlations
is that Bob’s result was pre-existing. The same argument applied to a measurement along an
arbitrary axis n̂ ⋅ ∣Ŝ⟩ concludes that the spin values of Bob’s particle along the three axes x̂,
ŷ, and ẑ are pre-existing simultaneously, which is prohibited by orthodox quantum mechanics
because [Ŝj , Ŝk] = ih̵ϵiklŜl.

EPR’s conclusion is that orthodox quantum mechanics is an incomplete theory, and the
result of a measurement - which, according to this theory, is random - is, in reality, pre-existing,
or, in other words, an "element of objective reality." With a single realization of the experiment,
it is obviously impossible to know if the result was pre-existing or if it was created at the time
of measurement, as per the idea of orthodox quantum mechanics. Therefore, EPR suggests that
with each repetition of the experiment, ideally with the same state ∣Ψ⟩, the true state containing
the "elements of objective reality," i.e., the pre-existing values of the spins, is not the same but
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rather characterized by a random component in these pre-existing values, which justifies the
random outcome of the subsequent measurements by Alice and Bob. These additional variables
are commonly referred to as "hidden variables."

EPR’s conclusion is strengthened by another argument. Suppose Alice and Bob choose to
measure along two different axes. If Alice measures Ŝz and obtains + h̵

2 , Bob’s particle will be
in the state ∣↓⟩z. If, on the other hand, Alice measures along Ŝx and obtains + h̵

2 , Bob’s particle
will be in the state ∣↓⟩x =

1√
2(∣↑⟩z − ∣↓⟩z).

Since Bob is at a great distance from Alice, it is reasonable to assume that Alice’s mea-
surement did not influence Bob’s particle’s state. The two states ∣↓⟩x and ∣↓⟩z must, therefore,
represent the same physical state. But this conclusion is prohibited by the orthodox interpreta-
tion of quantum mechanics since, in the first case, the value of Ŝz is not an "element of objective
reality," whereas, in the second case, it is. Therefore, it is necessary to assume the existence of
a hidden variable that determines the outcome of Bob’s measurement of Ŝz in both cases.

The three decades following the EPR paper saw several attempts to provide a demonstration
that the concept of hidden variables is incompatible with the predictions of quantum mechanics.
Almost 30 years later, John Bell embarked on the most successful of these attempts.

The work preceding Bell’s had produced "no-hidden-variables theorems" based on unjustified
or incorrect assumptions. Bell was inspired by research undertaken by Bohm around 1952. Bohm
had developed a theory that extended quantum mechanics by introducing a "pilot wave" - a form
of hidden variables.

The Bohm theory is perfectly capable of replicating all the predictions of orthodox quantum
mechanics while being a completely "realistic" theory. It thus stands as a counterexample to all
the (false) theorems from previous years. However, the cost of this success is the abandonment
of locality in the Bohm theory. John Bell comments on Bohm’s work as follows:

In this theory, an explicit causal mechanism exists whereby the disposition of one
piece of apparatus affects the results obtained with a distant piece. In fact, the EPR
paradox is resolved in the way which Einstein would have liked least.

While EPR where convinced that a complete theory (using hidden variables) was emerging.
according to them:

While we have thus shown that the wave function does not provide a complete de-
scription of the physical reality, we left open the question of whether or not such a
description exists. We believe, however, that such a theory is possible.

Bohm then shows that it is possible to realize this theory by introducing an instantaneous
causal mechanism, thus abandoning the locality that Einstein held dear. Bell, in his 1966 article
(written before the one published in 1965), poses the question of whether giving up locality is
a necessary condition for realizing a theory that uses hidden variables and is compatible with
orthodox quantum mechanics (and thus constructing a theory that contains only "elements of
objective reality").

Suppose, on the other hand, that the measurement results are pre-existing. We call Zi
n̂ = ± h̵

2
the value of the spin component along the axis n̂ for particle i (i = 1,2). These values will
change from one repetition of the experiment to another. Therefore, we can treat them as
random variables.

Consider three axes â, b̂, and ĉ, defined in the same plane and at an angle of 2π/3 with
respect to each other.
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2π
3

â

b̂ĉ

In this case, for each pair of axes:

P± =
1 + cos(2π/3)

2
= −1

4
For this realistic theory to reproduce this result, it is required that:

P (Z1
α ≠ Z2

β) =
1
4

if α ≠ β and α,β = â, b̂, ĉ, and that:
Z1

α = −Z2
α

(EPR correlation)

Theorem 11.0.1. If the above assumptions are met, then:

P (Z1
a ≠ Z2

b ) + P (Z1
b ≠ Z2

c ) + P (Z1
c ≠ Z2

a) ≥ 1

Demo. Z1
a , Z1

b , Z1
c cannot all be different, as they can only take two distinct values.

In his landmark 1965 article, Bell successfully demonstrated this theorem. He claimed that
a theory based on the assumptions of locality and "realism" necessarily implies quantitative
constraints expressed as inequalities for measurement results. Orthodox quantum mechanics
violates these inequalities!

Here, we provide a basic proof of the theorem, which relies on the EPR result. Later on, we
will present a more general and self-contained proof.

We start from the singlet state:

∣Ψ⟩ = 1√
2
(∣↑↓⟩− ∣↓↑⟩)

Suppose that Alice and Bob measure the components n̂ ⋅ Ŝ and m̂ ⋅ Ŝ, respectively. Let θ be the
angle between axes n̂ and m̂. It is observed (without proof, as an exercise for the reader) that
the probability that Alice and Bob measure two opposite values (i.e., + h̵

2 and − h̵
2 or vice versa)

is according to orthodox quantum mechanics:

P± =
1 + cos θ

2
θ ∈ [0, π]

In each configuration of the possible values for these three variables, at least two of the three
will be equal. The union of the sets of configurations in which at least two of the three variables
are equal is therefore the set of all possible configurations.

{Z1
a = Z1

b } ∪ {Z1
b = Z1

c } ∪ {Z1
c = Z1

a} = {Z1
a , Z

1
b , Z

1
c }

The sum of the three probabilities is thus:

P (Z1
a = Z1

b ) + P (Z1
b = Z1

c ) + P (Z1
c = Z1

a) ≥ 1
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Since Z1
α = −Z2

α, α = â, b̂, ĉ, we have P (Z1
α = Z1

β) = P (Z1
α ≠ Z2

β), so:

P (Z1
a ≠ Z2

b ) + P (Z1
b ≠ Z2

c ) + P (Z1
c ≠ Z2

a) ≥ 1

According to the expression for P± = 1/4, the value predicted by orthodox quantum mechanics
for the same sum is:

P± + P± + P± = 3/4 < 1

This is inconsistent with the previous result. This inequality is an example of what are called
"Bell inequalities."

The EPR and Bell arguments can thus be summarized as follows.
EPR: If (1) we assume a principle of locality, and (2) we accept the correlations between

measurements on the state ∣Ψ⟩, we are forced to admit that the measurement outcomes preexist,
meaning they are "elements of objective reality."

Bell: If we assume that the measurement values on ∣Ψ⟩ (on different axes) all preexist,
then we obtain an inequality that is incompatible with the predictions of orthodox quantum
mechanics.

The conjunction of these two arguments, therefore, implies that the principle of locality
is incompatible with the predictions of orthodox quantum mechanics. We must admit that a
measurement has an instantaneous, distant effect.

11.1 Bell Inequalities: General Formulation
The argument used previously to deduce Bell’s theorem is based on two fundamental assump-
tions.

1. The EPR argument: locality and correlations predicted by orthodox quantum mechanics
imply the existence of hidden variables. In other words, "elements of objective reality"
associated with the measured quantities.

2. The validity of the perfect correlations predicted by orthodox quantum mechanics for
measurements on the singlet spin state.

Bell’s theorem sparked intense discussions in the years that followed, particularly about the
restrictive nature of these two assumptions.

Thus, Bell’s theorem can be improved in two aspects: firstly, it does not rely on the EPR
argument or on perfect correlations in the singlet spin state because they may not be realized in
practice. These resulting minor deviations can bring orthodox quantum mechanics within the
limits imposed by Bell.

To address these objections, Bell developed a generalized version of his theorem that (1)
starts from independent assumptions, without using EPR, and that (2) establishes inequalities
that depend on the value of certain correlations between observables continuously. Thus, it is
possible to show that, to bring orthodox quantum mechanics within the limits imposed by the
theorem, the measured values of the correlations should significantly differ from values predicted
by orthodox quantum mechanics — differences that would be experimentally measurable.

This new version of Bell’s theorem leads to the famous CHSH inequalities, tested by some
of the earliest experiments.

Suppose we make a measurement on a system composed of two subsystems that interacted
in the past (producing correlations) and are now very distant. The EPR state can be taken as
an example.
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α1 and α2 are the control parameters that determine the type of measurement made on
subsystems 1 and 2, respectively. For example, in the EPR state, α1 and α2 represent the two
axes along which Alice and Bob, respectively, choose to make their measurements.

Suppose α1 and α2 are chosen freely and randomly by Alice and Bob, immediately before
the measurement, in a way that there is no way for Alice’s choice of α1 to influence Bob’s choice
of α2.

Once α1 and α2 are chosen, measurements are performed, resulting in values A1 and A2,
respectively. According to orthodox quantum mechanics, A1 and A2 exhibit a random behavior
from one measurement to another, i.e., over multiple repetitions of the experiment under iden-
tical conditions (with constant values of α1 and α2. For each pair of chosen values of α1 and
α2, the values A1 and A2 are subject to a probability distribution:

Pα1,α2(A1,A2)

which generally depends on α1 and α2.
It’s important to note at this point that the assumption of pre-existing values has not been

introduced yet. Nothing is assumed regarding the origin of the random nature of the results
A1 and A2. These values may be partly pre-existing and partly derived from the measurement
process.

In this sense, this initial assumption is very different from the assumption in the simplified
version of Bell’s theorem, in which pre-existing values are assumed from the beginning.

The concept of locality must be rigorously expressed. Simply factorizing the probability
distribution as follows is not possible:

Pα1,α2(A1,A2) = Pα1,α2(A1)Pα1,α2(A2)

Indeed, the two subsystems may have interacted previously and thus contain correlations result-
ing from the initial preparation.

However, locality must imply a decorrelation of any random behavior in the outcomes of A1
and A2 once the "elements of objective reality" (and thus the values of hidden variables) are
fixed. More precisely, let λ represent the set of (hidden) variables that determine the "elements
of objective reality" in the measurements of A1 and A2. The value of λ changes from one
experiment repetition to another, following the probability distribution P (λ). Any correlation
between the values of A1 and A2 should only be attributed to their dependence on λ. In other
words:

Pα1,α2(A1,A2) = ∫ dλPα1,α2(A1,A2∣λ)P (λ)

where Pα1,α2(A1,A2∣λ) is the conditional probability distribution given a specific value of λ.
According to our definition of locality, any remaining random character described by Pα1,α2(A1,A2∣λ)

must be decorrelated. Therefore, locality implies:

Pα1,α2(A1,A2∣λ) = Pα1(A1∣λ)Pα2(A2∣λ)

with the additional assumption that measurements depend locally on α1 and α2. For example,
Pα1(A1∣λ) cannot depend on α2.”

Since α1 and α2 are arbitrarily chosen by Alice and Bob, our analysis must also include
the assumption that P (λ) does not depend on α1 and α2. This is an additional assumption
compared to the locality assumption, and it expresses the free will of Alice and Bob. This
type of assumption is referred to as "non-conspiracy." Indeed, since λ is chosen by Nature, the
possibility that this choice is determined by Alice and Bob should be considered an incredible
conspiracy on the part of Nature, attempting to prevent any rational analysis.
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Let’s now define the correlation function C(α1, α2) for the observables α1 and α2.

C(α1, α2) = Eα1,α2(A1 ⋅A2) = ∫ dλEα1,α2(A1 ⋅A2∣λ)P (λ)

where Eα1,α2(A1 ⋅ A2) is the expectation value of the product A1 ⋅ A2 for a given choice of α1
and α2. Eα1,α2 .(A1 ⋅A2∣λ) represents the same quantity, conditioned on λ.

Eα1,α2(A1 ⋅A2) = ∑
A1,A2

A1A2Pα1,α2(A1,A2)

Eα1,α2(A1 ⋅A2∣λ) = ∑
A1,A2

A1A2Palpha1,alpha2(A1,A2∣λ)

From these expressions, it is possible to prove the CHSH-Bell inequality.

Theorem 11.1.1. Suppose that ±1 are the only allowed values for A1 and A2. The hypothesis
above imply

∣C(a, b) −C(a, c)∣ + ∣C(a, b) +C(a′, c)∣ ≤ 2

for all choices of parameters a, b, c, a′.

Demo. We have

Eα1,α2(A1,A2∣λ) = Eα1(A1∣λ)Eα2(A2∣λ) ∀λ,α1, , α2

from which

∣C(a, b) −C(a, c)∣ + ∣C(a, b) +C(a′, c)∣
≤ ∫ [∣Ea(A1∣λ)∣ ⋅ ∣Eb(A2∣λ) −Ec(A2∣λ)∣ + ∣Ea′(A1∣λ)∣ ⋅ ∣Eb(A2∣λ) +Ec(A2∣λ)∣]P (λ)dλ

≤ ∫ [∣Ab(A2∣λ) −Ec(A2∣λ)∣ + ∣Eb(A2∣λ) +Ec(A2∣λ)∣]P (λ)dλ

where the first inequality is taken from

∣∫ f(x)dx∣ ≤ ∫ ∣f(x)∣dx

and the second one
∣Eα(A1∣λ)∣ ≤ 1

The proof of the theorem follows from

Lemme 11.1.2. for x, y ∈ R and x, y ∈ [−1,1] we have ∣x − y∣ + ∣x + y∣ ≤ 2

Demo.

(∣x − y∣ + ∣x + y∣)2 = 2x2 + 2y2 + 2∣x2 − y2∣

=
⎧⎪⎪⎨⎪⎪⎩

4x2 x2 > y2

4y2 x2 < y2

≤ 4
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The CHSH-Bell inequality is thus proven. What does orthodox QM predict for C(α,β)?
Consider bell state

∣Ψ⟩ = 1√
2
(∣↑⟩⊗ ∣↓⟩− ∣↓⟩⊗ ∣↑⟩)

where ∣↑⟩ and ∣↓⟩ are the eigenstates of a spin component û ⋅ Ŝ, we can show (exercise) that
orthodox QM says

C(â, b̂) = −â ⋅ b̂

where â and b̂ are the unitary vectors wrt which the spins are measured, and “⋅” is the Euclidean
scalar product. If we choose

â

b̂

â′

ĉ

π
4

π
4

π
4

we obtain the maximal violation of the inequality.

∣C(â, b̂) −C(â, ĉ)∣ + ∣C(â′, b̂) +C(â′, ĉ)∣

= ∣− cos(π
4
) + cos(3π

4
)∣ + ∣− cos(π

3
) − cos(π

4
)∣

= ∣−
√

2
2
−
√

2
2
∣ + ∣−

√
2

2
−
√

2
2
∣ = 2
√

2 > 2

This new version of Bell’s theorem, coming from only the locality hypothesis is also incompatible
with orthodox QM.

Since the publication of this original proof, tens of experiments, have demonstrated this
violation.
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Appendix A

Exercises

A.1 2014 exam

Exercise 1 : 2 photon transition (1,5 points)
An atom is modeled by a 3-level system represented here, with ω0 ≠ ω′0:

∣3⟩

∣2⟩

∣1⟩

h̵ω′0

h̵ω0

Starting from t = 0, this system is subjected to a perturbation V̂ (t) = eiωtv̂ + e−iωtv̂†, where

v̂ = h̵Ω ∣1⟩⟨2∣ + h̵Ω′ ∣2⟩⟨3∣ , (A.1)

and Ω,Ω′ ∈ R are angular frequencies introduced here to simplify the coupling amplitudes. This
perturbation V̂ (t) represents the action of a photon field with energy h̵ω.

1. Calculate the probability P (1)12 (ω, t) for the transition from the state ∣1⟩ to the state ∣2⟩ at
the first-order perturbation.

2. By examining the ratio P (1)12 (ω, t)/P
(1)
12 (ω0, t), show that at long times, the dependence of

P
(1)
12 (ω, t) on ω is sharply peaked around ω0 (resonance).

3. Calculate P (1)13 (ω, t), the probability of transition from ∣1⟩ to ∣3⟩ at the first order.

4. Show that the probability of transition between ∣1⟩ and ∣3⟩ at the second-order perturbation
is P (2)13 (ω, t) = ∣a

(2)
13 (ω, t)∣2, where

a
(2)
13 (ω, t) =

ΩΩ′
ω0 − ω

(e
i(ω0+ω′0−2ω)t − 1
ω0 + ω′0 − 2ω

− e
i(ω′0−ω)t − 1
ω′0 − ω

) . (A.2)

It can be shown (calculation not required) that this probability is written in the form

P
(2)
13 (ω, t) =

4Ω2Ω′2
δ2δ′∆

sin2 (δt
2
) + 4Ω2Ω′2

δ(δ′)2∆
sin2 (δ

′t

2
) − 4Ω2Ω′2

δδ′∆2 sin2 (∆t
2
) , (A.3)
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where δ = ω0 − ω, δ′ = ω′0 − ω, and ∆ = ω0 + ω′0 − 2ω. Qualitatively sketch the shape of
P
(2)
13 (ω, t) as a function of ω at long times. What about P (2)12 (ω, t)?

5. Deduce from the previous questions the schematic appearance of the absorption spectrum
(as a function of ω, considering processes at the first and second orders) when the atom is
initially in the ground state ∣1⟩. Take the limit of long times. Indicate for each absorption
line the process ∣1⟩ → ∣f⟩ involved, as well as the corresponding perturbation order.

6. How do you interpret the last of the three terms in equation (A.3)? What is the physical
process involved? Does it imply conservation of energy?

Exercise 2 : Fine structure of an atom (2,0 points)
We are interested in the spin orbit coupling effect on the first levels of the hydrogen atom.

With such a coupling, the hamiltonian is Ĥ = Ĥ0 + V̂LS where (with ge ≃ 2)

Ĥ0 =
p̂2

2me
+ V (r), V (r) = − e2

4πϵ0r
, V̂LS = A(r)L̂.Ŝ, A(r) = ge

4m2
ec

2
1
r

dV

dr
. (A.4)

1. The total angular momentum Ĵ = L̂+Ŝ is defined, and we denote the eigenvalues of Ĵ
2, L̂

2,
Ŝ

2, Ĵz, L̂z, and Ŝz as j(j + 1)h̵2, l(l + 1)h̵2, s(s + 1)h̵2, mj h̵, mlh̵, and msh̵, respectively
(reminder: the electron has a spin of s = 1/2). What are the possible values of j as a
function of l? What are the corresponding values of mj?

2. It is recalled that L̂
2, L̂z, Ŝ

2, and Ŝz commute with Ĥ0. Express L̂ ⋅ Ŝ in terms of Ĵ
2, L̂

2,
and Ŝ

2. Calculate the commutators of Ĵ
2, L̂

2, Ŝ
2, Ĵz, L̂z, and Ŝz with Ĥ.

3. We are only interested in the bound states of hydrogen. The simultaneous eigenstates
of Ĥ0, Ĵ

2, and Ĵz, denoted as {∣nlsjmj⟩}, arise from the combination of orbital angular
momentum and spin. Are the states {∣nlsjmj⟩} eigenstates of L̂.Ŝ? Are they eigenstates
of V̂LS? Justify.

4. Consider V̂LS as a perturbation to Ĥ0. Calculate the energy variation ∆Enlj of the states
{∣nlsjmj⟩} to first-order perturbation theory in terms of the mean values ⟨Rnl∣A(r)∣Rnl⟩,
where Rnl are the radial wave functions of the bound states. What is the correction for
the s states (l = 0)? For l ≥ 1, simplify the expression for ∆Enlj using the result from
question 1. Explain how the spin-orbit interaction introduces the "fine" structure of the
hydrogen atom.

5. In the context of our model, we focus on the 2P level (n = 2, l = 1): what are the possible
values of j? Denote the associated levels of fine structure as 2Pj . Calculate their energy
shifts due to V̂LS , knowing that ⟨R21∣A(r)∣R21⟩ = α4mec

2/(48h̵2), with α = e2/(4πϵ0h̵c), the
fine-structure constant. Numerical application: at a level of approximation that doesn’t
require a calculator, estimate the energy shifts and the magnitude of degeneracy lifting
of the 2Pj levels in eV and MHz (reminder: h̵ = 1.05 × 10−34 J.s, me = 9.11 × 10−31 kg,
ϵ0 = 8.85 × 10−12 F.m−1).

Exercise 3 : Time evolution of a density matrix (1,5 points)
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Consider a two spin 1
2 system, with states defined in a 4d hilbert sapce with basis B made

of vectors ∣Sz
1⟩⊗ ∣Sz

2⟩ = ∣Sz
1S

z
2⟩. Here ∣Sz

j ⟩ are the eigenstates of Ŝz
j (j = 1,2) with eigenvalues ± h̵

2 .
For simplicity, we will write ∣↑↑⟩, ∣↑↓⟩, ∣↓↑⟩ and ∣↓↓⟩ theses same states. Suppose that the time
evolution is determined by the Hamiltonian

Ĥ = g(Ŝ+1 ⊗ Ŝ−2 + Ŝ−1 ⊗ Ŝ+2 ), (A.5)

where Ŝ±j = Ŝx
j ± iŜ

y
j .

1. Find a matrix for Ĥ in the B basis.

2. Find the eigenvalues and eigenstates of Ĥ.

3. At t = 0, the system is in ∣Ψ(0)⟩ = ∣↓↑⟩. Find state ∣Ψ(t)⟩ at t. Hint: use the eigenstates
found above.

4. write the density matrix ρ(t) corresponding to the state ∣Ψ(t)⟩, in basis {∣↓↓⟩ , ∣↑↓⟩ , ∣↓↑⟩ , ∣↑↑⟩}.

5. Compute the reduced density matrix ρ1(t) of the first spin by using the partial trace over
the second spin.

6. Consider ρ1(t) at t = 0, and at gh̵t = π
4 . Discuss these 2 matrices underlying their nature

(pure or mixed) and discuss the link with entanglement between the 2 spins.

A.2 2015 Exam

Exercise 4 : Sudden Displacement of Harmonic Oscillator (2 points)
Consider a one-dimensional harmonic oscillator characterized by the potential V̂ = mω2x̂2

2
and, therefore, by the Hamiltonian Ĥ0 = h̵ω(â†â + 1/2) (where m is the mass and ω is the
angular frequency). An experimenter prepares the system in the first excited state ∣1⟩ = â† ∣0⟩,
where ∣0⟩ is the ground state of Ĥ0. At t = 0, the experimenter accidentally hits the table,
causing the center of the oscillator to instantly move to a new position x = b.

1. Express the operator V̂ (t) associated with the perturbation in terms of â and â†, i.e., such
that Ĥ(t) = Ĥ0 + V̂ (t).

2. Suppose the experimenter does not notice the displacement, and a very long time elapses.
Calculate, in this limit and to the lowest order of perturbation in b, the probability per
unit time W1→n that the system makes a transition to an eigenstate ∣n⟩ of Ĥ0 with n ≠ 1.

3. Suppose, on the other hand, that after a time T > 0, the experimenter notices the displace-
ment and instantly returns the oscillator to its initial position. Calculate, to the lowest
order in b, the probability P1→n that the system is in a state ∣n⟩ with n ≠ 1 for t > T .
Suggestion: In this second part, if you don’t remember the expression for the transi-
tion probability, it may be useful to directly apply the time evolution operator ÛS(t,0)
(Schrödinger’s viewpoint). In this case, remember that ÛS(t,0) = e−iĤ0t/h̵ÛI(t,0), where
UI(t,0) is the operator in the interaction viewpoint, given by ÛI(t,0) = T exp [− i

h̵ ∫
t

0 V̂I(t′)dt′),
and V̂I(t) = eiĤ0t/h̵V̂ e−iĤ0t/h̵.
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Exercise 5 : Variational Principle for an Anharmonic Potential (1 point)
Consider a one-dimensional particle with mass m, subjected to a potential V (x) = αx4.

1. Up to a dimensionless factor, we can express the energy of the ground state as a product
of powers of the constants that define the problem, i.e., E0 ∝ h̵ambαc. Find the values of
a, b, and c using dimensional analysis alone.

2. Using the variational principle, determine an upper bound on the energy E0 of the ground
state. Use a Gaussian as a trial function: ψ(x) = exp (− x2

2σ2 ). Note that

∫
+∞

−∞
e−y2

dy =
√
π , ∫

+∞

−∞
y2e−y2

dy =
√
π

2
, ∫

+∞

−∞
y4e−y2

dy = 3
4
√
π .

Exercise 6 : Entanglement criteria (2 points)
A quantum system is composed of 2 subsystems and is defined in Hilbert space H = H1⊗H2,

where H1 and H2 are the space of both subsystems respectively. The state of such a subsystems
is separable if we can express its density matrix as

ρs = ∑
k

pkρ
(1)
k ⊗ ρ(2)k , (A.6)

with∑k pk = 1, pk ≥ 0, and ρ(1)k and ρ(2)k being density matricies in spacesH1 andH2 respectively.
A system that cannot be described by a matrix of this type (A.6), is a system with quantum
entanglement.

Recall that a density matrix must obey the following properties: (i) Tr(ρ) = 1; (ii) ρ = ρ†;
(iii) Positive semi definiteness. ⟨ψ∣ρ∣ψ⟩ ≥ 0 for all ∣ψ⟩ in their space of definition.

1. Show that, for such a separable state, the average value of an arbitrary observable A1 of
subsystem 1 does not depend on subsystem 2. In other words, it does not depend on ρ(2)k .

2. Three actors, named A, B, and C (or Alice, Bob, and Charlie), each has a quantum bit (a
quantum system defined in a 2-dimensional Hilbert space with basis {∣0⟩ , ∣1⟩}). The system
of the three quantum bits is in the state ∣ψGHZ⟩ = 1√

2(∣000⟩+ ∣111⟩) (here and throughout,
in the notation ∣ijk . . .⟩, index i indicates the state of Alice’s qubit, index j indicates Bob’s
qubit, etc.). Alice lives in another galaxy, and Bob and Charlie have no knowledge of the
total state of the three quantum bits. Calculate the density matrix associated with the
mixed state that describes the subsystem formed by the quantum bits of Bob and Charlie
(in the basis {∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩}). Show that this matrix is of separable type.

Now, let’s consider the operation of partial transposition (not to be confused with partial
trace). Consider a density matrix ρ that describes the state of a system composed of two sub-
systems. Let {∣i⟩ , ∣j⟩ , . . .} represent the states of the basis of the first subsystem, {∣µ⟩ , ∣ν⟩ , . . .}
represent the states of the basis of the second subsystem, and {∣iµ⟩ , ∣iν⟩ , ∣jµ⟩ , ∣jν⟩ , . . .} represent
the states of the basis of the total system. If the matrix ρ has matrix elements ρiµ,jν = ⟨iµ∣ρ∣jν⟩,
then the matrix elements of the density matrix ρTP , obtained by performing partial transposition
with respect to the second subsystem, are defined as (ρTP )iµ,jν = ⟨iν∣ρ∣jµ⟩. (Partial transposition
with respect to the first subsystem is defined similarly).
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3. Show that for a separable state of two subsystems, of the form (A.6), the partial transpose
ρTP

s with respect to one of the two subsystems is still a valid density matrix. In other
words, it still satisfies the three properties (i), (ii), and (iii) mentioned above.
Remark: We will thus have demonstrated a necessary condition for a density matrix to
be separable. Automatically, we will have a sufficient condition for a density matrix to be
non-separable, i.e., entangled.

4. Four actors, named A, B, C, and D (or Alice, Bob, Charlie, and David), each have a
quantum bit. The system of the four quantum bits is in the state ∣ψS⟩ = 1

2(∣0000⟩+ ∣0011⟩+
∣1100⟩ − ∣1111⟩). As before, Alice lives in another galaxy. Calculate the density matrix
associated with the mixed state that describes the subsystem formed by the quantum bits
of Bob, Charlie, and David (in the basis {∣000⟩ , ∣001⟩ , ∣010⟩ , . . . , ∣111⟩}). Demonstrate
that the mixed state shared by Bob, Charlie, and David is an entangled state. In this
regard, we will use the criterion just defined.
Suggestion: study the eigenvalues of the partial transpose. Note: there are several ways
to divide a system of three qubits into two subsystems. Remark: if no mistakes are made,
diagonalizations should only be performed in 2-dimensional subspaces.

A.3 2016 Exam

Exercise 7 : 3 coupled harmonic oscillators (3 points)
Consider the system of three coupled harmonic oscillators, described by the Hamiltonian

Ĥ =
3
∑
j=1

h̵ωâ†
j âj − ∑

j<k

J(â†
j âk + â†

kâj) , (A.7)

where the second sum is taken over distinct pairs of indices (j, k), i.e., (1,2), (1,3), and (2,3).
We assume that the three oscillators are placed at the vertices of an equilateral triangle. There-
fore, the system is invariant under the operations of the C3v symmetry group. In particular,
each operation of C3v realizes a permutation of the three oscillators. The character table of C3v

is provided below. We denote states with a non-negative number of quanta on each oscillator
as ∣n1, n2, n3⟩. These states form an orthonormal basis.

1. Show that the Hamiltonian commutes with the number operator, i.e., [Ĥ, N̂] = 0, where
N̂ = ∑3

j=1 â
†
j âj . Explain what this implies for the eigenstates of Ĥ.

2. Now consider the three states ∣100⟩, ∣010⟩, and ∣001⟩. Using group representation theory
and simple symmetry considerations, find the eigenvalues and eigenvectors of Ĥ in the
subspace generated by these three vectors. In particular, explain the degeneracies imposed
by symmetry.

3. Consider the subspace of dimension 6 generated by states ∣n1, n2, n3⟩ with n1 + n2 + n3 =
2. Without explicitly calculating the eigenvalues and eigenvectors of Ĥ but only using
representation theory, determine the number of distinct energy levels and their degeneracies
characterizing the eigenstates of Ĥ in this subspace.
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C3v E 2C3 3σv

Γ(1) 1 1 1
Γ(2) 1 1 −1
Γ(3) 2 −1 0

Table A.1: Character table
for C3v

Suggestion. To calculate the characters associated with the oper-
ations of C3v, it is worth noting that you only need to know the
diagonal elements of the corresponding matrices, and it is sufficient
to perform this calculation once for each equivalence class of the
group. Also, it is worth noting that, to solve this problem, the use
of "projectors" onto the irreducible representations of the group is
not necessary.

Exercise 8 : Entanglement entropy (2 points)
Consider a quantum system in a Hilbert space H1 of dimension 2, described by the following

density matrix:

ρ̂ = ( x 0
0 1 − x ) 0 ≤ x ≤ 1 (A.8)

1. Calculate the von Neumann entropy of ρ̂, defined as S(ρ̂) = −Tr(ρ̂ ln(ρ̂)) = S(x). Study
the behavior of S(x) within its domain. What is the value of S when ρ̂ is a pure state? For
what value of x does S(x) reach a maximum, and what type of state does it correspond
to?

Now, consider a system composed of two subsystems A and B, as seen in the previous
section. The states of this system are defined in the Hilbert space H = H1 ⊗H1. We will now
use the concept of Schmidt decomposition: it can be shown that it is always possible to find
two orthonormal bases {∣a1⟩, ∣a2⟩} and {∣b1⟩, ∣b2⟩} in the Hilbert space H1, allowing an arbitrary
pure state ∣ψ⟩ ∈ H to be written as:

∣ψ⟩ = ∑
j=1,2

λj ∣aj⟩ ⊗ ∣bj⟩, with λj ∈ R , 0 ≤ λj ≤ 1 , and ∑
j=1,2

λ2
j = 1 . (A.9)

2. Using the Schmidt decomposition, calculate the reduced density matrices ρ̂A = TrB(∣ψ⟩⟨ψ∣),
and ρ̂B = TrA(∣ψ⟩⟨ψ∣).

3. Calculate S(ρ̂A) and S(ρ̂B). What is the relationship between these two values? What is
the value of S(ρ̂A) if ∣ψ⟩ is a separable state (i.e., non-entangled)? And if ∣ψ⟩ is a state
with maximum entanglement between the two subsystems?

4. Explain qualitatively (and briefly) why S(ρ̂A) is called "entanglement entropy."

Exercise 9 : Hydrogen atom in cubic potential (1 point)
A hydrogen atom is subjected to a time-independent perturbation described by the potential

V (r) = V0
a3

B

xyz, where V0 > 0 and aB = Bohr radius . (A.10)

1. Can V (r) produce, at first-order perturbation, a finite correction to the eigenenergy of the
atom’s 1s level, i.e., the one with the principal quantum number n = 1?

2. Can V (r) produce, at first-order perturbation, a finite correction to the eigenenergies of
the four levels (2s, 2p) of the atom, i.e., those with n = 2?

Suggestion. Write V (r) in spherical coordinates. Use the operator L̂z = −ih̵∂/∂ϕ to express
V (r) as a linear combination of spherical tensors.
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A.4 2017 exam

Exercise 10 : 2-D perturbed harmonic oscillator (2 points)
A two-dimensional harmonic oscillator is described by the Hamiltonian Ĥ0 = p̂2

x

2m +
1
2mω

2x̂2 +
p̂2

y

2m +
1
2mω

2ŷ2 = Ĥx+Ĥy. Since it is a separable Hamiltonian, the eigenstates are tensor products
of eigenstates of the two harmonic oscillators along x and y: ∣n,m⟩ = ∣n⟩⊗∣m⟩ = (â

†
x)

n
√

n! ∣0⟩⊗
(â†

y)
m

√
m! ∣0⟩,

where âx =
√

mω
2h̵ x̂+ i

p̂x√
2mh̵ω

and ây =
√

mω
2h̵ ŷ+ i

p̂y
√

2mh̵ω
. The corresponding eigenvalues of Ĥ0 are,

up to an additive constant, given by Ĥ0 ∣n,m⟩ = h̵ω(n +m) ∣n,m⟩.
The oscillator is subjected to an external potential V (x̂, ŷ) that is invariant under the sym-

metry group of the square, denoted as D4. The group elements consist of two C4 rotations
around the ẑ axis (which is orthogonal to the square), a C2 rotation around the ẑ axis, two C ′2
rotations around the x̂ and ŷ axes, and two C ′′2 rotations around the two diagonals of the square.
The total Hamiltonian is Ĥ = Ĥ0 + V (x̂, ŷ).

It is noted that the operators âx and ây, under the transformations of D4, transform like the
coordinates x and y, respectively.

1. Determine if the degeneracy of states ∣1,0⟩ and ∣0,1⟩ can be lifted by the perturbation
V (x̂, ŷ).

2. Determine if the degeneracy of states ∣2,0⟩, ∣1,1⟩, and ∣0,2⟩ can be lifted by the perturbation
V (x̂, ŷ). If yes, specify the residual degeneracy. Suggestion: One of these three states alone
generates a subspace invariant under the operations of D4.

3. Determine if the degeneracy of states ∣3,0⟩, ∣2,1⟩, ∣1,2⟩, and ∣0,3⟩ can be lifted by the
perturbation V (x̂, ŷ). If yes, specify the residual degeneracy.

D4 E 2C4 C2 2C ′2 2C ′′2
Γ(1) 1 1 1 1 1
Γ(2) 1 1 1 −1 −1
Γ(3) 1 −1 1 1 −1
Γ(4) 1 −1 1 −1 1
Γ(5) 2 0 −2 0 0

Table A.2: Character table of D4 group

Suggestion: First, determine the explicit transforma-
tion laws of the operators âx and ây under the opera-
tions of D4. This will directly yield the transformation
laws of the states and, consequently, the representa-
tions of the group D4 associated with them. It is also
worth noting that, to solve this problem, the use of
"projectors" onto the irreducible representations of the
group is not essential.

Exercise 11 : Density matrix purification (2 points)
Consider a spin 1/2, which, in the basis {∣+⟩ , ∣−⟩} of the eigenstates of Ŝz, is in a mixed state

described by the density matrix:

ρA =
1
8
( 5

√
3√

3 3 ) (A.11)

1. Verify that this matrix satisfies the three properties of density matrices. Suggestion: It
will be useful to find the eigenvalues of matrix (1).
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2. Now, consider a second spin 1/2. We have a system composed of two subsystems, A and
B, given by the first and second spins, respectively. Find an explicit expression for a pure
state ∣ψ⟩ = ∑j,k=± αjk ∣j, k⟩ such that ρA = TrB(∣ψ⟩⟨ψ∣). Suggestion: It will be useful to
first find the eigenvectors of the density matrix (1).

3. Is the state ∣ψ⟩ thus found unique? If not, find a second state ∣ψ′⟩ = ∑j,k=± βjk ∣j, k⟩ such
that ρA = TrB(∣ψ′⟩⟨ψ′∣).

Exercise 12 : Perturbed harmonic oscillator (2 points)
A harmonic oscillator is described (up to an additive constant) by the Hamiltonian Ĥ0 =

h̵ωâ†â. The eigenstates of Ĥ0 are denoted as ∣n⟩, where n = 0, 1, 2, . . ., and Ĥ0 ∣n⟩ = nh̵ω ∣n⟩. At
time t = 0, a perturbation is switched on:

V̂ (t) = { 0 t < 0
V̂ t ≥ 0

where V̂ = h̵γ(â2 + â†2), γ ∈ R, and γ > 0. We assume that at t < 0, the oscillator is in its ground
state ∣0⟩.

1. Express, at the first order of time-dependent perturbation theory, the probability P0→n(t)
that the oscillator, at t > 0, is in the state ∣n⟩, with n > 0. For which states ∣n⟩ does the
probability P0→n(t) have a finite value? What is the limit of P0→n(t) as t→ +∞?

We will now consider the system described by the Hamiltonian Ĥ = Ĥ0 + V̂ and study its
fundamental stationary state using the variational principle.

2. Use the variational assumption ∣0′⟩ = ∣0⟩+ α ∣2⟩, where α ∈ R is the parameter to be varied
(note that the state ∣0′⟩ expressed this way is not normalized). Under the assumption that
γ ≪ ω, calculate the state ∣0′⟩ that minimizes the average energy value and express this
average value to the lowest order in γ/ω.

3. Discuss the difference between the result found in point 2 and that obtained in point 1 in
the limit t→ +∞.

Suggestion: In the limit γ ≪ ω, one would expect that the difference between the states ∣0⟩
and ∣0′⟩ is small, and therefore the solution to the variational problem satisfies the condition
α≪ 1.

A.5 2018 Exam

Exercise 13 : 2-Site Ising Model with Transverse Field (2 points)
Consider a model of two interacting spins subjected to a transverse magnetic field. The

system’s Hamiltonian is given by

Ĥ = −Jσ̂(z)1 ⊗ σ̂(z)2 − hσ̂(x)1 ⊗ Î2 − hÎ1 ⊗ σ̂(x)2 , (A.12)
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where σ̂(z)j and σ̂
(x)
j are the Pauli matrices, j = 1,2 for the first and second spin, respectively,

with J > 0 and h > 0. Here, Î1 and Î2 represent the identity operator in the space of the first and
second spins, respectively. We will consider the basis {∣−−⟩ , ∣+−⟩ , ∣−+⟩ , ∣++⟩} of the eigenstates
of σ̂(z)1 and σ̂

(z)
2 .

1. Explicitly write the matrix associated with Ĥ in this basis.

2. We consider the following variational assumption for the system’s ground state:

∣ψ0(α)⟩ = ∣−−⟩+ α ∣+−⟩+ α ∣−+⟩+ ∣++⟩ , (A.13)

with α ∈ R. Note that the state ∣ψ0(α)⟩ as expressed is not normalized. Using the
variational principle, show that the value of α that minimizes the average energy is

αm = −
J

2h
+
¿
ÁÁÀ J2

(2h)2 + 1 . (A.14)

3. Calculate the average energy E0 over the state ∣ψ0(α)⟩ for α = αm.

4. Demonstrate that the state found by the variational principle is indeed the exact ground
state of the problem. Why can the exact ground state be described by the assumption
∣ψ0(α)⟩, which contains only one variational parameter?

Exercise 14 : Entanglement Entropy in the Transverse Ising Model (2 points)
Consider the state of two spins:

∣ψ0(αm)⟩ =
∣−−⟩+ αm ∣+−⟩+ αm ∣−+⟩+ ∣++⟩√

2(α2
m + 1)

, (A.15)

with αm given previously. We will apply the concept of entanglement entropy, which provides
a measure of the entanglement between the two spins. Entanglement entropy is defined as
S = −Tr[ρ̂1 ln(ρ̂1)], where ρ̂1 = Tr2[ρ̂] is the reduced density operator of the first spin, obtained
by taking the partial trace of the density operator ρ̂ associated with the state of the two spins.

1. Explicitly write the matrix associated with the density operator ρ̂ in the basis {∣−−⟩ , ∣+−⟩ , ∣−+⟩ , ∣++⟩}.

2. Calculate the matrix associated with ρ̂1.

3. Calculate S.

4. What is the value of S in the limit J/h→∞? And in the limit J/h→ 0? What conclusions
can be drawn about the entanglement between the two spins in these two limits?

Exercise 15 : Vibrational Modes of a Triangular Molecule (2 points)
A molecule consists of three identical atoms arranged at the vertices of an equilateral triangle.

We are interested in the normal vibrational modes of the molecule around the equilibrium
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positions of the three atoms. The symmetry group of an equilateral triangle in R3 is D3h, and
its character table is provided below. We consider the ẑ axis oriented perpendicular to the plane
of the triangle. The operations of D3h include the identity, two C3 rotations around the ẑ axis,
three C2 rotations around the three axes connecting each vertex to the midpoint of the opposite
side, the mirror plane σh parallel to the triangle’s plane, two improper rotations S3 resulting
from the C3 rotations followed by σh, and three vertical mirrors σv on planes orthogonal to the
triangle’s plane.

Each atom can move independently in R3. Thus, the system has 9 independent degrees of
freedom, which generate a representation Γ of dimension 9 for the group D3h.

1. Calculate the characters of the representation Γ.

2. Determine the decomposition of Γ into a direct sum of irreducible representations of D3h,
Γ = b1Γ(1) + . . . + b6Γ(6).

3. In this decomposition, which irreducible representations are associated with the translation
of the center of mass?

4. And which irreducible representations are associated with the rigid rotations of the molecule?

5. Which irreducible representations are associated with the proper vibrational modes of the
molecule (i.e., other than the center of mass translation and rotations)? What is the
degeneracy of the corresponding normal vibrational frequencies?

Suggestion: The representation Γ can be determined by taking the tensor product between
the representation generated by a displacement vector and the representation associated with
permutations of the three vertices generated by the group’s operations.

D3h E 2C3 3C2 σh 2S3 3σv

Γ(1) 1 1 1 1 1 1 x2 + y2, z2

Γ(2) 1 1 −1 1 1 −1 Rz

Γ(3) 2 −1 0 2 −1 0 (x, y) (x2 − y2, xy)
Γ(4) 1 1 1 −1 −1 −1
Γ(5) 1 1 −1 −1 −1 1 z

Γ(6) 2 −1 0 −2 1 0 (Rx,Ry) (xz, yz)

Table A.3: Character table for the D3h group

A.6 2019 Exam

Exercise 16 : Harmonic oscillator in an external field (15/50 points)
Consider an isotropic 2-D harmonic oscillator. The oscillator is subjected to an external

potential V (x, y) that is invariant under the symmetry transformations of a pentagon (group
D5, character table below). Therefore, the Hamiltonian is H =H0 + V (x, y), where

H0 = −
h̵2

2m
( ∂

2

∂x2 +
∂2

∂y2) +
1
2
mω2(x2 + y2) . (A.16)
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The eigenstates of H0 will be denoted as ∣nx, ny⟩, where nx and ny are the numbers of quanta
in each direction of the oscillations. The corresponding eigenenergies are EN = Nh̵ω, with
N = nx + ny.

Consider V (x, y) as a time-independent perturbation.

1. Using group representation theory, determine if the energy degeneracy of states with N = 1
is lifted by V (x, y) at the first-order perturbation. If so, how is it lifted?

2. Same question, for states with N = 2.

3. Same question, for states with N = 3.

It is recalled that the eigenstates of the 2-D harmonic oscillator can be constructed from
those of the 1-D harmonic oscillator, which are

ψn(x) =
1√
2nn!

(mω
πh̵
)

1
4
e−

mωx2
2h̵ Hn (

√
mω

h̵
x) , n = 0, 1, 2, . . .

In particular, we have H1(x) = 2x, H2(x) = 4x2 − 2, and H3(x) = 8x3 − 12x.

D5 E 2C5 2(C5)2 5C ′2
A1 1 1 1 1 x2 + y2, z2

A2 1 1 1 −1 z, Rz z3, z(x2 + y2)
E1 2 2 cos (2π

5 ) 2 cos (4π
5 ) 0 (x, y) (Rx, Ry) (xz, yz) (xz2, yz2) [x(x2 + y2), y(x2 + y2)]

E2 2 2 cos (4π
5 ) 2 cos (2π

5 ) 0 (x2 − y2, xy) [xyz, z(x2 − y2)] [y(3x2 − y2, x(x2 − 3y2)]

Table A.4: Character table of the D5 group

Exercise 17 : Entropy of a quantum system (15/50 points)
The state of a quantum system is described by a density operator ρ̂. The Von Neumann

entropy is defined as S = −Tr(ρ̂ ln ρ̂) (note that this involves the logarithm of an operator!). The
entropy measures the extent to which the state is a statistical mixture.

1. What is the value of S for a pure state ρ̂ = ∣ψ⟩⟨ψ∣?

2. Show that if the density operator evolves in time according to the Von Neumann equation
dρ̂

dt
= −i[Ĥ, ρ̂] ,

the entropy S(t) remains constant over time.

3. Now consider a spin 1/2 system. It is assumed that the interaction with the environment
results in a time evolution governed by the equation

dρ̂

dt
= −i[Ĥ, ρ̂] − γ

2
(n̂2ρ̂ + ρ̂n̂2 − 2n̂ρ̂n̂) ,

where n̂ = (I + σ̂z)/2 and Ĥ = ωσ̂z. If at t = 0, in the basis {∣σz = +1⟩ , ∣σz = −1⟩} of the
eigenstates of σ̂z,

ρ = ( ρ11 ρ12
ρ∗12 ρ22

)

calculate the matrix ρ(t) at time t.
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4. For the same spin 1/2 system, it is now assumed that at t = 0, the system is in the pure
state ∣ψ⟩ = (∣+1⟩+ ∣−1⟩)/

√
2. Calculate the entropy S(t) as a function of time. What is the

value of S(t) in the limit t→∞?

Exercise 18 : Perturbed Harmonic Oscillator (20/50 points)
The motion of a particle with mass m in one dimension is governed by the Hamiltonian

H = − h̵
2

2m
d2

dx2 +
1
2
mω2x2eλx2

,

with λ > 0. This problem can be considered as a perturbation of the harmonic oscillator, with
H =H0 + V where

H0 = −
h̵2

2m
d2

dx2 +
1
2
mω2x2

V (x) = 1
2
mω2x2 (eλx2 − 1) .

Recall that the wave function of the ground state of the harmonic oscillator is ψ0(x) =
(β0

π )
1
4
e−

β0x2
2 where β0 = mω

h̵ . For the solution of this problem, we assume λ ≪ β,β0. Also,
remember that for Gaussian integrals, we have ∫ +∞−∞ dxe−βx2 =

√
π/β and ∫ +∞−∞ dxx2e−βx2 =

(1/2)
√
π/β3.

1. Calculate the energy of the ground state to first order in the perturbation V (x).

2. Calculate the energy of the ground state, this time using the variational principle. Use the
normalized trial wave function for the ground state

ψ(x) = (β
π
)

1
4
e−

βx2
2 ,

with β > 0.

A.7 2015 Midterm

Exercise 19 : Confined Quantum Stark Effect (2.5 points) Consider an electron with
mass m in a one-dimensional potential well of width L, with infinite barriers located at x = ±L/2,
described by the Hamiltonian Ĥ0. A constant electric field of intensity E is applied to the system,
subjecting the electron to the Coulomb force F = −eE, resulting in a perturbation V̂ = Fx̂.

1. Schematically represent the total potential experienced by the electron for F > 0.

2. Provide the Hamiltonian Ĥ0. Recall the eigenenergies En and wave functions φn(x) (n =
1,2, . . .) of the unperturbed electron, i.e., when F = 0, distinguishing between even and
odd values of n.

3. In the case where F ≠ 0, calculate the first-order energy correction E
(1)
1 of the ground

state. What do you observe?
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4. Deduce the first-order energy corrections of excited states E(1)n with n > 1.

5. Now, calculate the second-order energy correction E
(2)
1 of the ground state (exploit the

parity of wave functions). For the sums over intermediate states, restrict to only states
φ1(x) and φ2(x), and indicate V21 as the matrix element of the perturbation, calculated
between these two states.

6. Intuitively and qualitatively represent the shape of the wave function for the ground state
in the total potential.

Exercise 20 : Interacting Particles in a Potential Well (2.5 points) Consider 2 indistin-
guishable particles (without spin) with mass m confined in a square one-dimensional potential
well V (x). Assume that the height of the barriers is such that only states associated with wave
functions φ1(x) and φ2(x) are confined in the well. The Hamiltonian of the system is given by

Ĥ(0) = Ĥ1 + Ĥ2, (A.17)

with
Ĥ1 =

p̂2
1

2m
+ V (x̂1), Ĥ2 =

p̂2
2

2m
+ V (x̂2). (A.18)

1. Suppose that the two-particle states are even under permutations. Determine a basis of
two-particle states, considering 2 particles from φ1 and φ2.

2. Now, suppose that the particles can interact when they are precisely at the same location
(contact interaction), which is represented by the perturbation V̂int = V0δ(x̂1 − x̂2), where
δ(x̂1 − x̂2) is the Dirac delta function. Calculate the first-order energy correction for each
of the previously established two-particle states. Discuss the relative values and signs of
these corrections.

3. Repeat the previous calculations in the case where the two-particle states are odd under
permutations. Compare the results obtained with the symmetric case and draw conclu-
sions.

Exercise 21 : Quantum Information (1 point)
Alice sends Bob a large number of qubits. These qubits are prepared as follows:

• Alice flips a coin.

• She uses an "instruction manual" (the same for all qubits) that states that if she gets
"heads," Alice sends a qubit in the state ∣ψp⟩, and if she gets "tails," she sends a qubit in
the state ∣ψf ⟩.

Bob must understand which instruction manual Alice is using. At the beginning of the
process, Alice chooses one of the three instruction manuals, A, B, C:

A ∶ ∣ψp⟩ = ∣0⟩ ∣ψf ⟩ = ∣1⟩

B ∶ ∣ψp⟩ =
1√
2
(∣0⟩+ ∣1⟩) ∣ψf ⟩ =

1√
2
(∣0⟩− ∣1⟩)

C ∶ ∣ψp⟩ = ∣0⟩ ∣ψf ⟩ =
1√
2
(∣0⟩+ i ∣1⟩)
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Is it possible for Bob to guess which instruction manual Alice is using? Why?

Suggestion: For each instruction manual, Alice is producing a statistical mixture of states.
Establish the corresponding density matrix for each instruction manual.

A.8 2016 Midterm

Exercise 22 : Impurity in a crystal field (3 points)
Consider an atom with an electron in a state of the 3d orbital (i.e., with angular momentum

L = 2, which means the orbital is fivefold degenerate). We will neglect the electron’s spin. The
atom is placed as an impurity in a crystal that is invariant under the symmetry operations of
the Td symmetry group (the symmetries of a tetrahedron). We can approximate the rest of
the electrons in the atom and its nucleus as if they form a simple positively charged nucleus.
Therefore, we associate one of the wave functions of the hydrogen atom with n = 3 and L = 2
with the electron in the 3d orbital. The electron is influenced by the electrostatic field produced
by the surrounding crystal. The Hamiltonian of the system is thus Ĥ = Ĥ0 + V̂ , where Ĥ0 is the
Hamiltonian that gives rise to the 3d levels of the atom in the absence of the crystal field, and
V̂ is the effect of the crystal field.

1. Using group representation theory and time-independent perturbation theory (degenerate
case), determine how the degeneracy of the 5 3d states is lifted. More precisely, determine
(i) how many distinct energy eigenvalues will result from the perturbation, and (ii) how
many times they are degenerate.

2. Consider electric dipole transitions between the degenerate levels that have been found.
Determine the selection rules for these transitions.

3. The wave functions associated with 3d-type states are even under spatial inversion. Discuss
whether the transitions seen in the previous point are allowed by parity or not. Note that
the Td group does not include inversion among its elements.

Td E 8C3 3C2 6σd 6S4 Fcts linéaires Fcts quadratiques
Γ(1) 1 1 1 1 1 x2 + y2 + z2

Γ(2) 1 1 1 −1 −1
Γ(3) 2 −1 2 0 0 (2z2 − x2 − y2, x2 − y2)
Γ(4) 3 0 −1 −1 1 (Rx,Ry,Rz)
Γ(5) 3 0 −1 1 −1 (x, y, z) (yz, xz, xy)

Table A.5: Character table for the Td group

Recall that

• For the group SO(3), all rotations of the same angle α belong to the same equivalence
class. To determine the character of a rotation by an angle α around any axis, you can
simply calculate the character of a rotation by an angle α around the ẑ axis, for which the
matrices of the irreducible representations are diagonal and known.
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• The operation σd in Td is a mirror operation, thus a rotation by α = π followed by inversion.
The operation S4 in Td is an improper rotation, hence a rotation by α = π/2 followed by
inversion.

• The wave functions of the 3d orbital are even under inversion. The matrix associated with
inversion, for all representations generated by these states, is therefore the identity.

Exercise 23 : Perturbed 2-D Harmonic Oscillator (3 points)
We will consider the isotropic two-dimensional harmonic oscillator. The Hamiltonian is given

by

Ĥ = p̂2
x

2m
+ 1

2
mω2x̂2 +

p̂2
y

2m
+ 1

2
mω2ŷ2

= Ĥ1(x̂) + Ĥ1(ŷ)

where

Ĥ1(x̂) =
p̂2

x

2m
+ 1

2
mω2x̂2

is the Hamiltonian of the one-dimensional harmonic oscillator.
As it is a separable Hamiltonian, the eigenstates of Ĥ are ψnm(x, y) = ϕn(x)ϕm(y), where

ϕn(x) are the eigenstates of Ĥ1(x̂) with eigenenergy ϵn = h̵ω(n + 1/2) and n = 0,1,2, . . .. Thus,
we have Ĥψnm = Enmψnm with Enm = ϵn + ϵm.

We introduce a small perturbation V̂ = λx̂ŷ.

1. What is the lowest order of perturbation for which there exists a non-zero correction to
the energy E00 of the ground state of Ĥ+V̂ ? Provide a rigorous argument for your answer.

2. What is the lowest order of perturbation for which there exists a non-zero correction to the
energies E01 and E10 of the first two excited states? Provide a rigorous argument for your
answer. Calculate the new energies resulting from this order of perturbation. Calculate
the eigenstates associated with the obtained energies. To what order in V̂ do these new
eigenstates differ from the initial states?

We recall that, for the one-dimensional harmonic oscillator, we have

ϕ0(x) = (
α

π
)

1
4
e−αx2/2

ϕ1(x) =
√

2αxϕ0(x)

with α =mω/h̵ and

∫
+∞

−∞
dxe−x2 =

√
π
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A.9 2017 Midterm

Exercise 24 : Attractive 1-D Potential Always Has 1 Bound State (2 points)
Consider the problem of a particle in one dimension, defined by the Hamiltonian Ĥ =

− h̵2

2m
d2

dx2 +V̂ (x). The potential V̂ (x) takes the form of a well, i.e., V̂ (x) ≤ 0 ∀x ∈ R, and V̂ (x) → 0
as ∣x∣ → ∞. Use the variational principle and the wave function ⟨x∣ψ⟩ = ψ(x) = A exp(−λx2),
which depends on the variational parameter λ > 0, to show that there is always at least one
bound eigenstate, i.e., with eigenenergy E0 < 0. In particular,

1. Calculate the normalization factor A.

2. Calculate ⟨ψ∣T̂ (x)∣ψ⟩ = ⟨ψ∣ (− h̵2

2m
d2

dx2 ) ∣ψ⟩.

3. We denote I(λ) = ⟨ψ∣V̂ (x)∣ψ⟩. So ⟨ψ∣Ĥ ∣ψ⟩ = ⟨ψ∣T̂ (x)∣ψ⟩ + I(λ). Explicitly write the
condition that minimizes the expectation of energy ⟨ψ∣Ĥ ∣ψ⟩. Use the resulting relation to
derive an expression for I(λ). Use this result in the expression for ⟨ψ∣Ĥ ∣ψ⟩ and demonstrate
that we always have ⟨ψ∣Ĥ ∣ψ⟩ < 0.

Recall that ∫ +∞−∞ dx exp(−x2) = √π. Use change of variables and integration by parts to derive
all necessary integrals for the resolution of this exercise.

Exercise 25 : Symmetry of Second-Degree Polynomials in R3 (2 points)
Consider six functions ψj(r), with r = (x, y, z) ∈ R3 and j = 1,2,3,4,5,6, defined as follows:

ψ1 = x2, ψ2 = y2, ψ3 = z2, ψ4 = xy, ψ5 = xz, ψ6 = yz. (Note: these functions are orthogonal but
not normalized. Their norm can be neglected for the rest of this exercise). Under rotations in
3D space R3, these functions generate a representation D of SO(3).

1. Calculate, for this space, the matrix associated with the rotation by an angle ϕ around
the z axis.

2. Using the characters, prove that D =D(0)⊕D(2), where D(l) are the irreducible represen-
tations of SO(3). For this, it will be helpful to calculate the characters χ(l)(ϕ) associated
with the irreducible representations D(l). Recall that all rotations by the same angle ϕ
around any axis belong to the same conjugacy class of the group SO(3).

3. Determine the linear combination of ψj(r) that generates the irreducible representation
D(0).

4. Now, assume that the symmetry group is smaller than SO(3) (for example, due to the
introduction of a perturbation). In particular, suppose that the new symmetry group is
C3v. Determine the decomposition of D as a direct sum of irreducible representations of
C3v.

C3v E 2C3 3σv

Γ(1) 1 1 1
Γ(2) 1 1 −1
Γ(3) 2 −1 0
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Exercise 26 : Harmonic Oscillator Subjected to a Pulsed Perturbation (2 points)
A harmonic oscillator, characterized by the Hamiltonian Ĥ0 = h̵ωâ†â, is subjected to a

perturbation in the form of a Gaussian pulse in time: V̂ (t) = E x̂ exp(−t2/τ2), where τ > 0
measures the duration of the pulse, and x̂ =

√
h̵/(2mω)(â+ â†). At t→ −∞, the system is in the

ground state ∣0⟩ of Ĥ0.

1. Calculate, to the first order of perturbation in V̂ , the probability that the system is in the
state ∣1⟩ = â† ∣0⟩ for t→ +∞.

2. Discuss the limits ωt→∞ and ωt→ 0 of the probability you found. What is the probability
in these two limits? For what physical reason? Determine the duration τm that maximizes
the probability found in point 1.

3. What is the lowest order of perturbation in V̂ required to have a finite probability of being
in the state ∣n⟩, with n > 1, for t→ +∞?

A.10 2018 Midterm

Exercise 27 : Lifting Degeneracy in the Presence of an External Field (3 points)
Consider the 5-dimensional space with a basis of spherical harmonics Y m

l (θ, ϕ) where l = 2.
This space defines the irreducible representation D2 of the group SO(3).

1. Write, in the given basis, the transformation matrix corresponding to a rotation by an
angle α around the z axis.

2. Calculate the character χ(α) of the representation D2 for a rotation by an angle α around
an arbitrary axis n and show that it is given by χ(α) = sin(l+1/2)α

sin α/2 . Why does this result
not depend on the axis n?

Imagine an electron in an atom with angular momentum L = 2 (neglecting its spin degree of
freedom), described by a state in the above-mentioned space. The corresponding energy level
is necessarily 5-fold degenerate due to the SO(3) symmetry. An external potential V (r) is
introduced, which is invariant under the symmetry group Oh of a cube (character table at the
end of the statement). Note that an operation denoted by Cn is a rotation by an angle 2π/n;
an operation σh or σd is a mirror operation, equivalent to a C2 rotation followed by inversion;
an operation Sn is a rotation by 2π/n followed by a mirror operation with respect to the plane
orthogonal to the rotation; E and i represent identity and inversion, respectively.

1. Calculate the characters of the representation D2 associated with the operations of the Oh

group.

2. With respect to the new symmetry group Oh, is the representation D2 reducible? If yes,
provide its decomposition into irreducible representations of the Oh group. What is the
consequence on the degeneracy of the electron’s energy levels?

Exercise 28 : Two Fermions in a Potential Well (3 points)
Consider two identical fermions with mass m and spin s = 1/2, subject to a potential well of

width L with infinite barriers. The potential of the well is 0 inside.
To start, we assume that the two particles do not interact with each other.
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1. Provide the wave function of the ground state of the two-particle system (including the
spin part). What is the energy of the ground state?

2. What is the energy of the first excited level? What is its degeneracy? Write the wave
functions of the states corresponding to this level.

3. What is the energy of the second excited level? What is its degeneracy? Write the wave
functions of the states corresponding to this level.

Now, we assume that the two particles interact with each other through a potential V (x1, x2) =
V0δ(x1 − x2).

1. Provide the correction to the energy of the ground state, to the lowest order in V0? (You
can leave this expression in its integral form).

2. Provide the correction to the energy of the first excited level, to the lowest order in V0?
(You can leave this expression in its integral form). Is the degeneracy lifted? If so, what
is the new degeneracy?

Figure A.1: Character table of the Oh group

A.11 2019 Midterm

Exercise 29 : Four Coupled Harmonic Oscillators (3 points)
Consider a system of four coupled harmonic oscillators described by the Hamiltonian

Ĥ =
4
∑
j=1

h̵ωâ†
j âj − ∑

⟨j,k⟩

J(â†
j âk + â†

kâj) , (A.19)

where the second sum is performed over pairs of adjacent values (j, k), i.e., (1,2), (2,3), (3,4),
and (4,1). It is assumed that the four oscillators are placed at the vertices of a square. The
system is thus invariant under the operations of the symmetry group D4. In particular, each
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operation of D4 performs a permutation of the four oscillators. The character table of D4 is
given below. The states ∣n1, n2, n3, n4⟩ are indicated, representing states with a number nj ≥ 0
of quanta on each oscillator. These states form an orthonormal basis.

1. Show that the Hamiltonian commutes with the number operator, i.e., [Ĥ, N̂] = 0, where
N̂ = ∑4

j=1 â
†
j âj . Explain what this implies for the eigenstates of Ĥ.

2. Now consider the four states ∣1000⟩, ∣0100⟩, ∣0010⟩, and ∣0001⟩. Using group representation
theory and simple symmetry considerations, find the eigenvalues and eigenvectors of Ĥ
in the subspace generated by these four vectors. In particular, specify the degeneracies
imposed by symmetry.

3. Consider the subspace of dimension 10 generated by states ∣n1, n2, n3, n4⟩ with n1 + n2 +
n3+n4 = 2. Without explicitly calculating the eigenvalues and eigenvectors of Ĥ but solely
using group representation theory, determine the number of distinct energy levels and their
degeneracies characterizing the eigenstates of Ĥ in this subspace.

D4 E 2C4 C2 2C ′2 2C ′′2
A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

Character table of the D4 group. Rotations C4 and C2 are around the orthogonal axis of the square. The C′2 are
around the medians. The C′′2 are around the diagonals.

Suggestion. To calculate the characters associated with the operations of D4, it is worth noting
that you only need to know the diagonal elements of the corresponding matrices, and you need
to perform this calculation only once for each equivalence class of the group. It’s also worth
noticing that, to solve this problem, the use of "projectors" on the irreducible representations of
the group is not necessary.

Exercise 30 : Variational Principle for Two Spin 1/2 Particles (3 points)
Consider a system composed of two spin 1/2 particles. These two spins interact with each other
and an external field according to the Hamiltonian

Ĥ = Ĥcl + Ĥext

Ĥcl = σ̂(z)1 σ̂
(z)
2

Ĥext = h (σ̂(x)1 + σ̂(x)2 ) h ≥ 0

We will use the basis of the eigenstates of σ̂(z)1 and σ̂
(z)
2 : {∣σ1, σ2⟩}, with σ1, σ2 = ±1. The

Hamiltonian Ĥcl is diagonal in this basis, and its diagonal matrix elements can be denoted as
Hcl(σ1, σ2).
Consider the variational state

ψ(σ1, σ2) = ⟨σ1, σ2∣ψ⟩
= exp (−βHcl(σ1, σ2)) β ≥ 0
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1. Write the equations dictated by the variational principle for the ground state of the prob-
lem.

2. Solve these equations (graphically?) to find the value of β that minimizes the energy of
the ground state.

3. Calculate the variational energy and the associated ground state in the limit h → 0. How
does this result compare with the exact result in this limit?

139



Appendix B

Solutions

B.1 2014 Exam

Exercise 1 : 2 Photon transition

1. The translation amplitude ai→f(t) of a state ∣i⟩ towards state ∣f⟩ under the effect of a
branched perturbation from t0 = 0 to t is given by

ai→f(t) = ⟨f ∣ÛI(t,0)∣i⟩, (B.1)

with

ÛI(t, t0) = 1 +
+∞

∑
n=1
(−i
h̵
)

n

∫
t

t0
dt1∫

t1

t0
dt2⋯∫

tn−1

t0
dtnV̂I(t1)V̂I(t2)⋯V̂I(tn) (B.2)

V̂I(t) = eiĤ0t/h̵V̂ (t) e−iĤ0t/h̵. (B.3)

At first perturbation order, the transition amplitude from ∣1⟩ to ∣2⟩ is written

a
(1)
12 (t) =

−i
h̵
∫

t

0
dt1⟨2∣eiĤ0t1/h̵V̂ (t1)e−iĤ0t1/h̵∣1⟩ = −i

h̵
∫

t

0
dt1e

i(ω2−ω1)t1⟨2∣V̂ (t1)∣1⟩, (B.4)

where ωi = Ei/h̵. Examining the form of V̂ (t), we note that term v̂ lowers between levels,
while v̂† causes an increase. Notably, we have V̂ (t) ∣1⟩ = h̵Ωe−iωt ∣2⟩, from where

a
(1)
12 (ω, t) = −iΩ∫

t

0
dt1e

i(ω0−ω)t1 , ω0 = ω2 − ω1. (B.5)

For ω ≠ ω0, we get

a
(1)
12 (ω, t) = −iΩ

ei(ω0−ω)t − 1
i(ω0 − ω)

= −2iΩ
ω0 − ω

ei(ω0−ω)t/2 sin (ω0 − ω)t
2

, (B.6)

and for ω = ω0, integration gives a(1)12 (ω0, t) = −iΩt. Finally, we get for the transition
probability

P
(1)
12 (ω, t) = ∣a

(1)
12 (ω, t)∣

2 = 4Ω2

(ω0 − ω)2
sin2 (ω0 − ω)t

2
, (B.7)

with continuous extension in ω = ω0 giving P (1)12 (ω0, t) = Ω2t2 = ∣a(1)12 (ω0, t)∣2.
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2. We have

P
(1)
12 (ω, t)

P
(1)
12 (ω0, t)

= f1/t(ω0 − ω), fα(x) = sinc2 ( x
2α
) . (B.8)

In other words, the ratio has the shape of a sinc whose value in ω0 − ω = x = 0 is always
1 and whose pulsation, given by α = 1/t, tends to zero in the limit t → ∞. This shows
that the function who at ω associates P (1)12 (ω, t) is shrply peaked around the resonnance
frequency ω0 for long times.

3. Since ⟨3∣V̂ (t1)∣1⟩ = 0 for all time t1, we have

a
(1)
13 (ω, t) =

−i
h̵
∫

t

0
dt1e

i(ω3−ω1)t1⟨3∣V̂ (t1)∣1⟩ = 0, (B.9)

and the transition probability P
(1)
13 (ω, t) = ∣a

(1)
13 (ω, t)∣2 is thus zero. to obtain the first

nonzero probability at transtion probability P13, we need at least perturbation order 2.

4. The use of expressions (B.1) and (B.3) at second order, imply

a
(2)
13 (ω, t) = −

1
h̵2 ∫

t

0
dt1∫

t1

0
dt2⟨3∣eiĤ0t1/h̵V̂ (t1)e−iĤ0(t1−t2)/h̵V̂ (t2)e−iĤ0t2/h̵∣1⟩. (B.10)

Since

V̂ (t2) ∣1⟩ = h̵Ωe−iωt2 ∣2⟩ (B.11)
V̂ (t1) ∣2⟩ = h̵Ωeiωt1 ∣1⟩+ h̵Ω′e−iωt1 ∣3⟩ , (B.12)

We get

a
(2)
13 (ω, t) = −ΩΩ′∫

t

0
dt1∫

t1

0
dt2e

iω3t1e−iωt1e−iω2(t1−t2)e−iωt2e−iω1t2

= −ΩΩ′∫
t

0
dt1e

i(ω′0−ω)t1 ∫
t1

0
dt2e

i(ω0−ω)t2 . (B.13)

For ω distinct from ω0 and ω′0, integration gives

a
(2)
13 (ω, t) = −

ΩΩ′
i(ω0 − ω) ∫

t

0
dt1e

i(ω′0−ω)t1 (ei(ω0−ω)t1 − 1)

= ΩΩ′
ω0 − ω

(e
i(ω0+ω′0−2ω)t − 1
ω0 + ω′0 − 2ω

− e
i(ω′0−ω)t − 1
ω′0 − ω

) , (B.14)

Which is the result we asked for.

To analyze the pulsation dependence of P (2)13 (ω, t) at long time, we note that the formula
given can be written

P
(2)
13 (ω, t) =

(ΩΩ′)2t2
(ω′0 − ω)(ω0 + ω′0 − 2ω)f1/t(ω0 − ω) +

(ΩΩ′)2t2
(ω0 − ω)(ω0 + ω′0 − 2ω)f1/t(ω′0 − ω)

− (ΩΩ′)2t2
(ω0 − ω)(ω′0 − ω)

f1/2t (
ω0 + ω′0

2
− ω) , (B.15)

That is to say, as the sum of 3 sinc square (filter function) centered in ω0, ω′0 and (ω0 +
ω′0)/2, of typical respective width 1/t, 1/t and 1/(2t), and of max value (at the origine)
respectively Pm/4, Pm/4 and Pm, where Pm = Pm(t) = 4Ω2Ω′2t2/(ω′0 − ω0)2. In the long
time limit, we get a function of ω sharply peaked around the 3 resonance pulsations, with
3 well separated peaks at t≫ 1/∣ω′0 − ω0∣. For ω′0 = 0.6ω0, this figure shows the behavior:
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To examine P (2)12 (ω, t), we revisit the expressions (B.10) to (B.12) by replacing the bra
corresponding to the final state ⟨3∣ with ⟨2∣, which results in P

(2)
12 (ω, t) = 0. Indeed, one

cannot transition from ∣1⟩ to ∣2⟩ through a second-order process because each of the two
applications of V̂ either raises (v̂†) or lowers (v̂) the energy level; starting from ∣1⟩, the
probabilities lead to either ∣1⟩ or ∣3⟩ (in fact, a superposition of ∣1⟩ and ∣3⟩), but not to ∣2⟩.

5. The absorption probability is given by Pabs(ω, t) = P12(ω, t) + P13(ω, t) ≃ P (1)12 (ω, t) +
P
(2)
13 (ω, t) up to the second order of perturbation. By including the processes of the 1st

( 1⃝) and the 2nd ( 2⃝) order, we obtain the absorption line spectrum as follows:

ω
ω0ω0+ω′0

2
ω′0

1⃝: ∣1⟩ → ∣2⟩
&

2⃝: ∣1⟩ → ∣3⟩

2⃝: ∣1⟩ → ∣3⟩
2⃝: ∣1⟩ → ∣3⟩

where the height of the lines symbolizes the absorption efficiency; the lines for second-order
processes are smaller than those for first-order processes since, by assumption, we are in a
perturbative regime, so Ω and Ω′ are small, and Pm(t)/P (1)12 (ω0, t) = 4Ω′2/(ω′0 − ω0)2 ≪ 1.

6. The last of the three terms in equation (3) of the statement corresponds to a resonance

2h̵ω = h̵ω0 + h̵ω′0 = E3 −E1 (B.16)

in the excitation process of atoms ∣1⟩ and ∣3⟩. This resonance, therefore, corresponds to a
situation where the energy of two photons exactly matches the energy difference between
the initial and final states. This implies that it is a two-photon excitation process (two
photons are absorbed in the electromagnetic field to excite the atom from ∣1⟩ to ∣3⟩), which
aligns intuitively with it being a second-order process (in this interpretation, the operator
e−iωtv̂† corresponds to the absorption/annihilation of a photon and the simultaneous ex-
citation of the atom, and it must be applied twice to go from ∣1⟩ to ∣3⟩). This two-photon
process would have the following representation:
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∣3⟩

∣2⟩

∣1⟩

h̵ω′0

h̵ω0 ¢ h̵ω = h̵ω0+ω′0
2

¢ h̵ω = h̵ω0+ω′0
2

It can be seen that the two-photon process conserves energy "globally" since the combined
energy of the two photons allows for the difference between the initial and final states to be
bridged. Nevertheless, it can be observed that energy is not conserved in the "individual"
underlying processes, namely, the absorption of a "first" photon that transitions the atom
from ∣1⟩ to ∣2⟩, and then the absorption of a "second" photon that transitions the atom
from ∣2⟩ to ∣3⟩.

Note 1 (not requested): In reality, the fact that the transfer from ∣1⟩ to ∣3⟩ is not sequential
(coupling ∣1⟩ → ∣2⟩, waiting time of a similar duration, coupling ∣2⟩ → ∣3⟩) allows for the
energy difference between the dashed line and the level E2.

Note 2 (not requested): The first two terms of equation (3) in the statement (resonances at
ω0 and ω′0) correspond to processes that do not globally conserve energy (2h̵ω0 ≠ E3 −E1,
2h̵ω′0 ≠ E3 − E1); they result from the abrupt, step-like branching of the perturbation at
t = 0. This type of branching does not have an "adiabatic" limit when tending to infinity,
and, therefore, there is no energy conservation. For any other type of branching that
has an adiabatic limit (for example, a linear ramp between 0 and t, with a given average
amplitude over this interval, which becomes infinitely slow as t → +∞),these processes
would become negligible in the limit of long times, and the peaks at ω0 and ω′0 would
disappear from the spectrum above. Nevertheless, it is observed that these terms, which
violate the overall conservation of energy corresponding to a favored ∣1⟩ → ∣2⟩ → ∣3⟩ transfer
due to the resonant nature of ∣1⟩ → ∣2⟩ at the frequency ω0 (even if ∣2⟩ → ∣3⟩ is not resonant
at that time) or ∣2⟩ → ∣3⟩ at the frequency ω′0.

Exercise 2 : Fine structure of an atom

1. The values of j range from ∣l − s∣ to l + s. In other words, for l = 0, the only possible value
is j = 1/2. For l ≥, there are two possible values: j = l − 1/2 and j = l + 1/2. Regardless of
j, the corresponding values of mj are −j,−j + 1, . . . , j − 1, j.

2. The components of L̂ commute with those of Ŝ (one acts on the spatial degree of freedom
of the electron, the other on the spin degree of freedom), so Ĵ

2 = (L̂+Ŝ)2 = L̂
2+2L̂.Ŝ+Ŝ

2.
Hence,

L̂.Ŝ = 1
2
(Ĵ2 − L̂

2 − Ŝ
2) . (B.17)

To calculate the commutators with Ĥ, it is first noticed that all components of L̂ and
Ŝ commute with Ĥ0 and operators that depend only on r, such as A(r). Therefore, for
operators Ô = Ĵ

2
, L̂

2
, Ŝ

2
, Ĵz, L̂z, Ŝz, we have

[Ô, Ĥ] = [Ô, Ĥ0] + [Ô,A(r)L̂.Ŝ] = A(r)[Ô, L̂.Ŝ] (B.18)
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It is then established that

[L̂2
, L̂.Ŝ] = [L̂2

, L̂x]Ŝx + [L̂
2
, L̂y]Ŝy + [L̂

2
, L̂z]Ŝz = 0 (B.19)

[Ŝ2
, L̂.Ŝ] = [Ŝ2

, Ŝx]L̂x + [Ŝ
2
, Ŝy]L̂y + [Ŝ

2
, Ŝz]L̂z = 0 (B.20)

[Ĵ2
, L̂.Ŝ] = [L̂2

, L̂.Ŝ] + [Ŝ2
, L̂.Ŝ] + 2[L̂.Ŝ, L̂.Ŝ] = 0 (B.21)

and that

[L̂z, L̂.Ŝ] = [L̂z, L̂x]Ŝx + [L̂z, L̂y]Ŝy = ih̵(L̂yŜx − L̂xŜy) (B.22)
[Ŝz, L̂.Ŝ] = [Ŝz, Ŝx]L̂x + [Ŝz, Ŝy]L̂y = ih̵(L̂xŜy − L̂yŜx) (B.23)
[Ĵz, L̂.Ŝ] = [L̂z, L̂.Ŝ] + [Ŝz, L̂.Ŝ] = 0. (B.24)

We have thus shown that Ŝ
2, L̂

2, Ĵ
2, and Ĵz commute with the perturbation A(r)L̂.Ŝ

and the complete Hamiltonian Ĥ. However, the components (projections) of L̂ and Ŝ do
not commute with L̂.Ŝ and Ĥ and, therefore, do not correspond to conserved quantities.

3. By assumption (by construction), the states ∣nlsjmj⟩ are eigenstates of L̂
2, Ŝ

2, and Ĵ
2 with

the respective eigenvalues h̵2l(l+1), h̵2s(s+1), and h̵2j(j +1). Due to the identity (B.17),
they are also eigenvectors of L̂.Ŝ (with eigenvalues 1

2 h̵
2[j(j + 1) − l(l + 1) − s(s+ 1)]). The

quantum number n indicates that ∣nlsjmj⟩ are solutions of the radial Schrödinger equation
(depending only on l and r) for the hydrogen atom. These solutions are not eigenstates of
the operator A(r) (equivalent to a 1/r3 term), and therefore, ∣nlsjmj⟩ are not eigenstates
of V̂LS = A(r)L̂.Ŝ. From the above results, it follows that the matrix elements of V̂LS are

⟨n′l′sj′mj′ ∣V̂LS ∣nlsjm⟩ = ⟨Rn′l∣A(r)∣Rnl⟩
h̵2

2
[j(j + 1) − l(l + 1) − s(s + 1)]δl,l′δj,j′δmj ,mj′

,

(B.25)

where ∣Rnl⟩, n ≥ l + 1, represents the radial wave functions of the usual hydrogen atom.

4. The eigenstates of Ĥ0 are degenerate since their energy depends only on n. We must
employ degenerate perturbation theory. At the first order, the perturbation only mixes
states within the same degenerate subspace n, and the energy corrections (energy shifts)
are given by the eigenvalues of the matrix

M (1)
n = (⟨nl′sj′m′j ∣V̂LS ∣nlsjmj⟩)l′j′mj′ ,ljmj

. (B.26)

The considerations from the previous question, summarized in Eq. (B.25), show that this
matrix is diagonal, with diagonal elements given by

⟨nlsjmj ∣V̂LS ∣nlsjm⟩ = ⟨Rnl∣A(r)∣Rnl⟩
h̵2

2
[j(j + 1) − l(l + 1) − s(s + 1)]. (B.27)

The eigenstates remain unchanged at the first order of perturbation, but the eigenenergies
experience a shift ∆E = ∆Enlj given by these diagonal elements (the dependence on s is
not indicated as s = 1/2 is fixed):

∆nlj = ⟨nlsjmj ∣V̂LS ∣nlsjm⟩. (B.28)
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(i) At first-order perturbation, due to degeneracy, everything happens as if the ∣nlsjm⟩
states were eigenstates of V̂LS . For the s states (l = 0), only the case j = 1/2 = s exists,
and we have

∆En0j =∆En 0 1
2
= 0. (B.29)

For l ≥ 1, we have j = l + 1/2 or j = l − 1/2, and the expression (B.27) yields

∆En, l≥1, j = ⟨Rnl∣A(r)∣Rnl⟩
h̵2

2
× { l if j = l + 1/2
−(l + 1) if j = l − 1/2 . (B.30)

The L̂.Ŝ coupling partially lifts the degeneracy of each level n by creating, at the
first-order perturbation, sub-levels whose energy depends on l (infinitely many values)
and j (two values for each j value), but not on mj . This division into sub-levels is
called fine structure.

(ii) For l = 1, the possible values of j are j = 3/2 and j = 1/2, denoted as 2P1/2 and 2P3/2,
respectively. These levels are degenerate in the absence of V̂LS , and their shifts due
to V̂LS are

∆2,1,3/2 = +
h̵2

2
⟨R2,1∣A(r)∣R2,1⟩ =

1
96
α4mec

2 (B.31)

∆2,1,1/2 = −h̵2⟨R2,1∣A(r)∣R2,1⟩ = −
1
48
α4mec

2. (B.32)

Numerical application (with the oral indication that we will use α ≃ 1/137 to simplify
the calculations):

1
96
α4mec

2 = 9.11 ⋅ 3.002

0.96 ⋅ 1.374 10−25 ≃ 80
√

24 10−25 = 2 ⋅ 10−24 J, (B.33)

where we rounded down a bit. To convert results between units, we use 1 J = (1/1.60)⋅
1019 eV and Planck’s constant h = 2πh̵ = 6.63 ⋅ 10−34 J.s, which allows us to express
an energy E in terms of the corresponding frequency ν = E/h. We can quickly find
rough estimates:

∆2,1,3/2 ≃ 2 ⋅ 10−24 J ≃ 1 ⋅ 10−5 eV ≃ 3 GHz × h ≃ 20 GHz × h̵ (B.34)
∆2,1,1/2 ≃ −4 ⋅ 10−24 J ≃ −2 ⋅ 10−5 eV ≃ −6 GHz × h ≃ −40 GHz × h̵, (B.35)

and a degeneracy lifting of the order of 3 ⋅ 10−5 eV (more precisely 4.55 ⋅ 10−5 eV), or
about ten GHz×h (more precisely 11.0 GHz × h).

(iii) There is still residual degeneracy of states with differentmj (mj = −j,−j+1, . . . , j−1, j)
for each given level (n, l, j) of the fine structure. The fine level 2P3/2 is four-fold
degenerate (mj = −3/2,−1/2,1/2,3/2), while the fine level 2P1/2 is two-fold degenerate
(mj = −1/2,1/2).

Exercise 3 : Time evolution of a density matrix

1. In basis B = {∣↑↑⟩ , ∣↑↓⟩ , ∣↓↑⟩ , ∣↓↓⟩}, The matrix Ĥ is given by

[H]B = gh̵2
⎛
⎜⎜⎜
⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
. (B.36)
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2. The matrix of Ĥ is block diagonal. Its eigenvalues are 0 (twice degenerate) and ±gh̵2 (the
latter two are obtained by diagonalizing the central block). The corresponding eigenvectors
are ∣↑↑⟩ , ∣↓↓⟩ (for the eigenvalue 0), v+ = 1√

2(∣↑↓⟩+ ∣↓↑⟩) (for +gh̵2), and v− = 1√
2(∣↑↓⟩− ∣↓↑⟩)

(for −gh̵2).

3. At t = 0, ∣ ∣Ψ(0)⟩ = ∣↓↑⟩ = 1√
2(v+ − v−), hence

∣Ψ(t)⟩ = e−
iHt

h̵ ∣Ψ(0)⟩ = 1√
2
[e−igh̵tv+ − eigh̵tv−] = cos(gh̵t) ∣↓↑⟩− i sin(gh̵t) ∣↑↓⟩ . (B.37)

4. The density matrix is defined as ρ(t) = ∣Ψ(t)⟩⟨Ψ(t)∣. The matrix ρ(t) in the basis B is
given by

ρ(t) =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 sin2(gh̵t) −1

2 i sin(2gh̵t) 0
0 1

2 i sin(2gh̵t) cos2(gh̵t) 0
0 0 0 0

⎞
⎟⎟⎟
⎠
. (B.38)

5. The reduced density matrix ρ1(t) obtained by taking the partial trace over the states of
the second spin, and expressed in the basis {∣↓⟩ , ∣↑⟩} of the first spin, is:

ρ1(t) = (
cos2(gh̵t) 0

0 sin2(gh̵t)) . (B.39)

6. We have

ρ1(0) = (
1 0
0 0) . (B.40)

This matrix corresponds to a pure state. At time t = π
4gh̵ , the reduced density matrix

becomes

ρ1 (
π

4gh̵
) = (1/2 0

0 1/2) . (B.41)

It corresponds in this case to a mixed state. This is due to the interaction between the
2 spins, modeled by Ĥ, the 2 spin systems, initially in a separable state evolved, to find
itself at t = π

4gh̵ in an entangled state.

B.2 2015 Exam

Exercise 4 : Hamrmonic oscillator suddenly displaced(2 points)

1. After displacement, the system Hamiltonian becomes

Ĥ = p̂2

2m
+ 1

2
mω2(x̂ − b)2

= p̂2

2m
+ 1

2
mω2x̂2 + 1

2
mω2b2 −mω2bx̂

= Ĥ0 + V̂ (t)

with V̂ (t) =mω2b2/2 −mω2bx̂, constant for t > 0. Furthermore, x̂ =
√
h̵/2mω (â† + â).
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2. We can directly apply the Fermi golden rule for a constant perturbation V̂ , that is

W1→n =
2π
h̵
∣⟨n∣ V̂ ∣1⟩∣2δ (En −E1) (B.42)

where the eigen energies are En = h̵ω (n + 1/2). Note that if n ≠ 1, then ωn ≠ ω1 and thus
(B.42) is identically zero.

3. The perturbation lasts for finite time T the fermi golden rule, useful in the approximation
of a long perturbation, can no longer be applied. The transition probability at t is

P1→n = ∣⟨n ∣ ψ (t)⟩∣2

= ∣⟨n∣ ÛS (t,0) ∣1⟩∣
2

= ∣⟨n∣ e−iĤ0t/h̵ÛI (t,0) ∣1⟩∣
2

= ∣⟨n∣ e−iEnt/h̵ÛI (t,0) ∣1⟩∣
2

= ∣⟨n∣ ÛI (t,0) ∣1⟩∣
2

where indices S and I refer to the Schroedinger representation and interaction respectively.
At first order in V̂ we have

ÛI (t,0) = 1 −
i

h̵

T

∫
0

dt′V̂I (t′)

= 1 − i
h̵

T

∫
0

dt′eiĤ0t′/h̵V̂I (t′) e−iĤ0t′/h̵

The term in 1 does not contribute to the matrix element, as ⟨n∣1 ∣1⟩ = 0 and similarly for
the term in b2 in V̂ . We then have

⟨n∣ ÛI (t,0) ∣1⟩ = ⟨n∣ eiĤ0t′/h̵V̂I (t′) e−iĤ0t′/h̵ ∣1⟩

= − i
h̵

T

∫
0

dt′e−i(E1−En)t′/h̵ ⟨n∣ V̂ ∣1⟩

We note that having V̂ ∝ â† + â, the only states for which n = 0 and n = 2 will have a
nonzero transition probability. We compute

T

∫
0

dt′e−i(E1−En)t′/h̵ = − ih̵

E1 −En
(e−i(E1−En)t′/h̵ − 1)

⟨n∣ V̂ ∣1⟩ = −mω2b

√
h̵

2mω
⟨n∣ â† + â ∣1⟩

⟨0∣ V̂ ∣1⟩ = −mω2b

√
h̵

2mω

⟨2∣ V̂ ∣1⟩ = −mω2b

√
h̵

mω

and finally

P1→0 =
2mωb2

h̵
sin2 (ωT

2
)

P1→2 = 2P1→0
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Exercise 5 : Variational principle for an anharmonic potential (1 point)

1. Being given by V (x) = αx4 which has the dimension of an energy [V ] = [E], we can deduce

[α] = [E] [L]−4 (B.43)

on the other hand [h̵] = [E] [T ], [m] = [E] [L]−2[T ]2 and [E0] = [E] so

([E] [T ])a([E] [L]−2[T ]2)b([E] [L]−4)c = [E] (B.44)

By identification we extract

a + b + c = 1
a + 2b = 0

−2b − 4c = 0

Which we solve for exponents

a = 4
3

; b = −2
3

; c = 1
3

(B.45)

2. The system Hamiltonian is

Ĥ = − h̵
2

2m
∂2

∂x̂
+ αx̂4 (B.46)

With the trial function
ψσ (x) = e−

x2
2σ2 (B.47)

non other than a gaussian of standard deviation σ, we will have to normalize energy by

⟨ψσ ∣ ψσ⟩ =
+∞

∫
−∞

ψ2
σ (x)dx = σ

√
π (B.48)

The energy of the system in state ∣ψσ⟩ is

⟨ψσ ∣ Ĥ ∣ψσ⟩ = −
h̵2

2m
⟨ψσ ∣

∂2

∂x̂
∣ψσ⟩ + α ⟨ψσ ∣ x̂4 ∣ψσ⟩ (B.49)

with

⟨ψσ ∣
∂2

∂x̂
∣ψσ⟩ = −

√
π

2σ
⟨ψσ ∣ x̂4 ∣ψσ⟩ =

3
4
σ5√π

We find normalized energy

Eσ =
⟨ψσ ∣ Ĥ ∣ψσ⟩
⟨ψσ ∣ ψσ⟩

= h̵2

4mσ2 +
3
4
ασ4 (B.50)

We now look to minimize this energy in relation to σ by solving

∂Eσ

∂σ
= 0 (B.51)
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To find

σvar = (
h̵2

6mα
)

1/6

Evar =
3 × 61/3

8
( h̵

4α

m2 )
1/3

compatible with the dimensional analysis of question 1.

Exercise 6 : Entanglement criteria(2 points)

1. Consider operator A ∶ Ĥ1 ↦ Ĥ1. In the global hilbert space Ĥ, this operator becomes
Â = Â1 ⊗ 12. We thus have

⟨Â⟩ = Tr (Âρ̂)

= ∑
k

pkTr (Âρ̂(1)k ⊗ ρ̂(2)k )

= ∑
k

pkTr (Â1ρ̂
(1)
k )Tr (ρ̂(2)k )

= ∑
k

pkTr (Â1ρ̂
(1)
k )

since Tr (ρ̂(2)k ) = 1 for a density matrix. We have thus shown that ⟨Â⟩ is independant of
ρ̂
(2)
k

2. The density matrix at pure states ∣ψGHZ⟩ is built as

ρ̂0 = ∣ψGHZ⟩ ⟨ψGHZ∣

= 1
2
(∣000⟩ + ∣111⟩) (⟨000∣ + ⟨111∣)

The density matrix for subsystems B and C is given by the partial traces of ρ̂0 on the
Alice system

ρ̂ = ⟨0A∣ ρ̂0 ∣0A⟩ + ⟨1A∣ ρ̂0 ∣1A⟩

= 1
2
(∣00⟩ ⟨00∣ + ∣11⟩ ⟨11∣)

= 1
2

⎛
⎜⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

= 1
2
(ρ̂(1)0 ⊗ ρ̂(2)0 + ρ̂(1)1 ⊗ ρ̂(2)1 )

where ρ̂(j)0 = ∣0⟩ ⟨0∣ and ρ̂
(j)
1 = ∣1⟩ ⟨1∣.

3. For a separable density matrix ρ̂S , the definition of partial transposition is simply given
by

ρ̂TB
S = ∑

k

ρ̂
(1)
k ⊗(ρ̂

(2)
k )

T
(B.52)
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but the ρ̂(2)k are valid density matrices, that is:

Tr(ρ̂(2)k )
T
= Tr (ρ̂(2)k ) = 1

((ρ̂(2)k )
T
)

†
= (ρ̂(2)k )

T

(ρ̂(2)k )
T

and ρ̂
(2)
k have the same eigenvalues

thus ρ̂TB
S is still a separable density matrix .

4. Like before, the pure state of A, B, C and D is described by ρ̂0 = ∣ψS⟩ ⟨ψS ∣. We compute
the partial trace relative to A

ρ̂ = ⟨0A∣ ρ̂0 ∣0A⟩ + ⟨1A∣ ρ̂0 ∣1A⟩

= 1
4
(∣000⟩ ⟨000∣ + ∣000⟩ ⟨011∣ + ∣011⟩ ⟨000∣ + ∣011⟩ ⟨011∣)

+1
4
(∣100⟩ ⟨100∣ − ∣100⟩ ⟨111∣ − ∣111⟩ ⟨100∣ + ∣111⟩ ⟨011∣)

= 1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

To show that it is a mixed state, we compute the partial transpose relative to C. We see
that ρ̂TC

000,011 = ρ̂001,010 and ρ̂TC
001,010 = ρ̂000,011 and same for the 2e diagonal blocks. Thus

ρ̂TC = 1
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.53)

We can easily calculate the eigenvalues of this block-diagonal structure. For both blocks,
the secular equation is λ2−1 = 0, which gives 2 pairs of eigenvalues λ = ±1. The matrix ρ̂TC

thus has 2 negative eigenvalues, and therefore, it is not a valid density matrix. According
to the condition established earlier, we are in a case of a non-separable state and hence,
entangled.

B.3 2016 Exam

Exercise 7 : 3 coupled harmonic oscillators
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(i) The first term in Ĥ corresponds to h̵ωN̂ and thus commutes with N̂ . For the second
term, it’s sufficient to observe that this term does not change the total number of
quanta since each term of the form â†

j âk destroys one quantum and creates another
(or gives zero if nk = 0). Therefore, the total number of quanta is conserved, and the
term must commute with N̂ . For an explicit proof, let’s calculate:

[â†
j âk, â

†
l âl] = â†

j[âk, â
†
l âl] + [â†

j , â
†
l âl]âk

= â†
j[âk, â

†
l ]âl + â†

l [â
†
j , âl]âk

= â†
j âlδkl − â†

l âkδjl .

where we have used [âj , â
†
k] = δjk and [âj , âk] = 0. We notice that ∑j<k(â†

j âk+ â†
kâj) =

∑j≠k â
†
j âk, from which we have:

[N̂ ,∑
j<k

(â†
j âk + â†

kâj)] ∝∑
l

∑
j≠k

[â†
j âk, â

†
l âl]

= ∑
l

∑
j≠k

[â†
j âlδkl − â†

l âkδjl)

= ∑
j≠k

(â†
j âk − â†

j âk) = 0 .

If [N̂ , Ĥ] = 0, we can diagonalize both operators in the same basis. Consequently, Ĥ
takes a block-diagonal form, where each block is defined in a subspace generated by
vectors {∣n1, n2, n3⟩} with n1 + n2 + n3 = N and a fixed N .

(ii) As stated in point 1, we can find 3 eigenstates of Ĥ by diagonalizing it in this subspace.
Thus, we have restricted the problem to a 3-dimensional space. Now, let’s calculate
the representation Γ of C3v associated with this subspace. It is known from the
problem statement that Γ(g), for g ∈ C3v, is a permutation. To find the characters,
it’s sufficient to determine a matrix per class of equivalence of C3v.

• For E, we immediately have χ(E) = 3.
• For C3, it permutes 1→ 2, 2→ 3, and 3→ 1, which gives us the matrix

Γ(C3) =
⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

(B.54)

so χ(C3) = 0.
• For σv across the plane passing through 1, it has 1→ 1, 3→ 2, and 2→ 3, which

means χ(σv) = 1.
Even without using the formula, we can see that χ(g) = χ(1)(g)+χ(3)(g), and therefore
Γ = Γ1 ⊕ Γ3. The eigenstates will have degeneracies of 1 and 2. The eigenstate
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associated with Γ1 is the totally symmetric state, so it must be

∣ψ1⟩ =
1√
3
(∣100⟩ + ∣010⟩ + ∣001⟩) (B.55)

We can immediately verify that Ĥ ∣ψ1⟩ = E1 ∣ψ1⟩ with E1 = h̵ω − 2J . We can now
write two states orthogonal to ∣ψ1⟩, for example

∣ψ2,3⟩ =
1√
3
(∣100⟩ + α ∣010⟩ + β ∣001⟩) (B.56)

with ∣α∣2+∣β∣2 = 1. Orthogonality with ∣ψ1⟩ implies α+β+1 = 0. These two conditions
are satisfied by the cube roots of unity, and then

α = e±2i π
3

β = e∓2i π
3

We can verify that these are eigenstates of Ĥ; indeed, Ĥ ∣ψ2,3⟩ = E2,3 ∣ψ2,3⟩ with
E2,3 = h̵ω + J .

(iii) The six states are ∣200⟩ , ∣020⟩ , ∣002⟩ , ∣110⟩ , ∣101⟩ , ∣011⟩. Let’s calculate, as before, the
characters of the representation Γ of dimension six defined in this subspace. For the
identity, it’s straightforward, χ(E) = 6. Since C3 maps each state to a different state,
χ(C3) = 0. For the same σv as before, we have:

∣020⟩ ←→ ∣002⟩ ∣110⟩ ←→ ∣101⟩ (B.57)

but ∣200⟩ and ∣011⟩ stay in their place. So, the matrix will have two "1" values on
the diagonal, and χ(σv) = 2. Again, without necessarily using the formula, χ(g) =
2χ(1)(g) + 2χ(3)(g), so:

Γ = 2Γ1 ⊕ 2Γ3 (B.58)

There will be four distinct energy levels, two of which are non-degenerate, and two
others are doubly degenerate.

152



APPENDIX B. SOLUTIONS Quantum Physics II

Exercise 8 : Entanglement Entropy

(i) For a diagonal matrix, we have:

ln (ρ̂) = (ln (x) 0
0 ln (1 − x)) (B.59)

and then

S (x) = Tr [(x 0
0 1 − x)(

ln (x) 0
0 ln (1 − x))]

= − [x ln (x) + (1 − x) ln (1 − x)]

We can use the identity lim
x→0

x ln(x) = lim
x→−∞

yey = 0 to conclude that S(0) = S(1) = 0.
Now, let’s calculate the derivative of S with respect to x, which we can easily find:

dS (x)
dx

= ln (1 − x)
x

(B.60)

Then:

• For x = 0.5, (1 − x)/x = 1, and S′(x) = 0
• For x < 0.5, (1 − x)/x > 1, and S′(x) > 0
• For x > 0.5, (1 − x)/x < 1, and S′(x) < 0

So, necessarily, S(x) reaches a maximum at x = 0.5, and S(0.5) = ln(2). By making
the variable change 1−x→ y, we can also deduce that S(x) is symmetric with respect
to x = 0.5.

0.0 0.5 1.0
0.0

0.2

0.4

0.6

x

S(
x)

ln(2)

Figure B.1: Variation of entropy as a function of the parameter x

For a pure state, we need to verify Tr(ρ̂2) = x2 + (1 − x)2 = 1, which is achieved for
x = 0 or x = 1, and thus, Spure(x) = S(0) = S(1) = 0. The case S(0.5) = ln(2) = Smax
corresponds to a completely mixed state associated with maximum entropy. So, we
can interpret S(x) as a measure of the degree of mixing for a given state.
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(ii) Using the Schmidt decomposition, we have:

ρ̂A = TrB (∣ψ⟩ ⟨ψ∣) (B.61)
= ∑

j

⟨bj ∣ψ⟩⟨ψ∣ψ⟩ (B.62)

= ∑
j,k

λ2
k ∣ak⟩⟨bj ∣bk⟩⟨bk∣bj⟩ ⟨ak∣ (B.63)

= ∑
j

λ2
j ∣aj⟩⟨aj ∣ (B.64)

ρ̂B = ∑
j

λ2
j ∣bj⟩⟨bj ∣ (B.65)

(iii) In their respective bases, we have:

ρ̂A = (
λ2

1 0
0 λ2

2
) = ρ̂B (B.66)

Therefore, necessarily, S(ρ̂A) = S(ρ̂B) since S, involving a trace, does not depend
on the basis. We have S(ρ̂A) = S(λ2

1), which is the function studied in point 1, as
λ2

2 = 1 − λ2
1 by definition.

• If ∣ψ⟩ is separable, we can write ∣ψ⟩ = ∣a⟩ ⊗ ∣b⟩, which corresponds to λ1 = 1 and
λ2 = 0, so S(ρ̂A) = S(ρ̂B) = 0. * If ∣ψ⟩ is maximally entangled, then there exist
2 bases for which ∣ψ⟩ = (∣a1⟩ ⊗ ∣b1⟩ + ∣a2⟩ ⊗ ∣b2⟩)/2, and thus, S(ρ̂A) = S(ρ̂B) =
ln(2) = Smax.

(iv) Given the shape of S(x) and the results of points 2 and 3, we can propose that
S(ρ̂A) = S(ρ̂B) is a continuous measure of the entanglement present in ∣ψ⟩. By
measuring the entropy of one of the 2 subsystems, we can deduce the degree of
entanglement between A and B wherein the terminology entanglement entropy.
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Exercise 9 : Hydrogen Atom in a Cubic Potential We can express the potential in
spherical coordinates as follows:

V (r) = r3 sin2(θ) cos(θ) cos(ϕ) sin(ϕ) (B.67)

= 1
2
r3 sin2(θ) cos(θ) sin(2ϕ) (B.68)

= 1
4i
r3 sin2(θ) cos(θ) (exp 2iϕ − exp−2iϕ) (B.69)

Now, let’s express the potential as a sum of spherical tensors:

V =
∞

∑
k=0

k

∑
q=−k

ck,qT
(k)
q (B.70)

We know that the relation [Lz, T
(k)
q ] ∣n, l,m⟩ = h̵qT (k)q ∣n, l,m⟩ is valid for any state ∣n, l,m⟩.

In particular, if we evaluate it for ∣n, l,0⟩, we obtain that LzT
(k)
q = h̵qT (k)q . Let’s evaluate

LzV :

LzV = −ih̵
∂

∂ϕ
( 1

4i
r3 sin2(θ) cos(θ) (exp 2iϕ − exp−2iϕ)) (B.71)

= − h̵
4
r3 sin2(θ) cos(θ) ∂

∂ϕ
(exp 2iϕ − exp−2iϕ) (B.72)

= − h̵
4
r3 sin2(θ) cos(θ)2 (2 exp 2iϕ − (−2) exp−2iϕ) (B.73)

= 2h̵ck,2T
(k)
2 − 2h̵ck,−2T

(k)
−2 (B.74)

where we defined the coefficients ck,±2 = ∓
1
4
r3 sin2(θ) cos(θ). We see that V is a linear

combination of spherical tensors with q = ±2. The value of k is not important for this
problem, but we know that k ≥ 2.
According to the Wigner-Eckart theorem, only the matrix elements ⟨n′, l′,m′∣V ∣n, l,m⟩
with ∆m =m′ −m = q = ±2 can be nonzero.

(i) For the state ∣1s⟩ = ∣1,1,0⟩, the perturbation will be zero because ∆m = 0.
(ii) For the four states 2s and 2p, we need to apply degenerate perturbation theory. We

need to calculate the matrix in the subspace generated by ∣2,1,0⟩, ∣2,2,−1⟩, ∣2,2,0⟩,
and ∣2,2,1⟩. However, the same argument tells us that the only non-zero matrix
elements are those between the states ∣2,2,−1⟩ and ∣2,2,1⟩ because these are the only
cases where ∆m = ±2. However, these elements are zero due to parity. In fact, both
V and ϕ(r) = ⟨r∣ 2,2,±1⟩ are odd. So here too, the energy correction is zero.

Note that the parity argument also applies to the first case. However, relying solely on
this argument might lead to the erroneous conclusion that a transition is possible between
the states ∣2,1,0⟩ and ∣2,2,m⟩, which have different parities.

B.4 2017 exam

Exercise 10 : 2-D perturbed harmonic oscillator Since operators âx and ây transform,
under operators of D4, like x and y, we will start by figuring out the transformation laws for x
and y. For the character computation, we only need to study one operation per conjugacy class
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x y

E x y

C4 y −x
C2 −x −y
C
′

2 −x y

C
′′

2 y x

Table B.1: The x and y transformation as funciton of elements of group D4.

Associated 2 × 2 matrices

(1 0
0 1) ,(

0 −1
1 0 ) ,(

−1 0
0 −1) ,(

−1 0
0 1) ,(

0 1
1 0) , (B.75)

And the character of each matrix is given by

χ = 2,0,−2,0,0, (B.76)

Respectively. We immediately see that this coincides with the character of irreducible represen-
tation Γ5 of dimension 2.

1. Since âx and ây transform like x and y, ∣1,0⟩ = âx ∣0,0⟩ and ∣0,1⟩ = ây ∣0,0⟩ also transform
like x and y. These two states thus generate the irreducible representation Γ5 of the
symmetry group of the Hamiltonian.
The degeneracy is therefore necessary and cannot be removed by the perturbation V (x, y).

2. We proceed in the same manner and determine the transformation laws of x2, xy, and y2,
which will also be those of ∣2,0⟩, ∣1,1⟩, and ∣0,2⟩.
We observe from exercise 1.1. that the state ∣1,1⟩ transforms like xy and generates on its
own an invariant subspace:

E C4 C2 C
′

2 C
′′

2
xy xy −xy xy −xy xy

Table B.2: xy transformation as function of the elements of group D4.

The characters are given by
χ = 1,−1,1,−1,1, (B.77)

thus this state generates Γ4.
The other 2 states act like x2 and y2 :

E C4 C2 C
′

2 C
′′

2
x2 x2 y2 x2 x2 y2

y2 y2 x2 y2 y2 x2

Table B.3: The transformation of x2 and y2 as function of groupe elements D4.

We can deduce the character
χ = 2,0,2,2,0. (B.78)
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Without even applying the formula for decomposition, we see that this character corre-
sponds to the one of Γ1 ⊕ Γ3.
We conclude that the 3-dimensional space generated by ∣2,0⟩, ∣1,1⟩, and ∣0,2⟩ decomposes
into three invariant subspaces corresponding to Γ1 ⊕ Γ3 ⊕ Γ4.
Hence, there is no necessary degeneracy, and in general, the degeneracy will be lifted by
V (x, y).

3. Similar to the previous exercise, we easily observe that {∣3,0⟩ , ∣0,3⟩} and {∣2,1⟩ , ∣1,2⟩}
are two invariant subspaces (x3 can transform to ±x3 or ±y3 but not to x2y or xy2, and
vice-versa). They generate two 2-dimensional representations, Γ and Γ′.
Thus, we obtain

E C4 C2 C
′

2 C
′′

2
x3 x3 y3 −x3 −x3 y3

y3 y3 −x3 −y3 y3 x3

x2y x2y −y2x −x2y x2y y2x
y2x y2x x2y −y2x −y2x x2y

Table B.4: Transformation of x3, y3, x2y, y2x as function of elements of group D4.

The characters associated with the two representations Γ and Γ′ are

χ(Γ) = 2,0,−2,0,0 Ô⇒ Γ5χ(Γ′) = 2,0,−2,0,0 Ô⇒ Γ5 (B.79)

The 4-dimensional space therefore decomposes into two irreducible subspaces associated
with Γ5 ⊕ Γ5.
The perturbation will thus partially lift the degeneracy, and two energy levels doubly
degenerate will result from the perturbation V (x, y).

Exercise 11 : Purification of density matrix

1. We must check that

(i) Tr(ρA) = 1,
(ii) ρA = ρ†

A,
(iii) ρA is positive.

Verifying these 3 conditions :

(i) Tr(ρA) = 1
8(5 + 3) = 1

(ii) Being symmetric, we have ρA = ρ†
A.

(iii) The matrix is positive if all eigenvalues are ≥ 0.
We find that

(5 − x)(3 − x) − 3 = 0
⇒ x2 − 8x + 12 = 0
⇒ x = 4 ±

√
16 − 12

= 2,6

(B.80)
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Thus
ρA = (

2
8 0
0 6

8
) (B.81)

is positive

2. Generally a density matrix can be expressed diagonally by
ρA = ∑

j
pj ∣j⟩⟨j∣, where {∣j⟩} form a basis. We can always define a second subsystem B

identical, with same basis {∣k⟩}.
By construction, a pure state always has property ρA = TrB (∣ψ⟩⟨ψ∣) es

∣ψ⟩ = ∑
j

√
pj ∣j⟩⊗ ∣j⟩ . (B.82)

Indeed,

TrB (∣ψ⟩⟨ψ∣) = ∑
l

⟨l∣
⎛
⎝∑j,k

√
pjpk(∣j⟩⊗ ∣j⟩)(⟨k∣ ⊗ ⟨k∣)

⎞
⎠
∣k⟩

= ∑
l,j,k

√
pjpk ∣j⟩⟨k∣ ⟨l∣j⟩⟨k∣l⟩

= ∑
l,j,k

√
pjpk ∣j⟩⟨k∣ δljδkl

= ∑
l

pl ∣l⟩⟨l∣ ◻

(B.83)

In our case, we will find the pure states of ρA :

• 6th eigenvalue :

( ζ
√

3√
3 ζ

)(x
y
) = 6(x

y
) (B.84)

⇒ ζx +
√

3y = 6x
⇒ x =

√
3y

(B.85)

Norm : 3y2 + y2 = 1 ⇒
⎧⎪⎪⎨⎪⎪⎩

y = 1
2

x =
√

3
2

• second eigenvalue :

( ζ
√

3√
3 ζ

)(x
y
) = 2(x

y
) (B.86)

⇒ ζx +
√

3y = 2x
⇒ y = −

√
3x

(B.87)

Norm : x2 + 3x2 = 1 ⇒
⎧⎪⎪⎨⎪⎪⎩

x = 1
2

y = −
√

3
2

The state in question is thus

∣ψ⟩ =
√

3
4
∣φ1⟩⊗ ∣φ1⟩+

√
1
4
∣φ2⟩⊗ ∣φ2⟩ , (B.88)
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In which

∣φ1⟩ =
√

3
2
∣+⟩+ 1

2
∣−⟩ ,

∣φ2⟩ =
1
2
∣+⟩−

√
3

2
∣−⟩ .

(B.89)

Finally, we obtain

∣ψ⟩ =
√

3
2
(
√

3
2
∣+⟩+ 1

2
∣−⟩) ⊗ (

√
3

2
∣+⟩+ 1

2
∣−⟩)

+ 1
2
(1

2
∣+⟩−

√
3

2
∣−⟩) ⊗ (1

2
∣+⟩−

√
3

2
∣−⟩)

=1
8
[(3
√

3 + 1) ∣++⟩+ (3 −
√

3) ∣+−⟩+ (3 −
√

3) ∣−+⟩+ (3 +
√

3) ∣−−⟩] .

(B.90)

3. This state is not unique. See form example that

∣ψ′⟩ =
√

3
4
∣φ1⟩⊗ ∣φ2⟩+

√
1
4
∣φ2⟩⊗ ∣φ1⟩ (B.91)

gives the same matrix if we take partial trace relative to B :

∣ψ′⟩ =
√

3
2
(
√

3
2
∣+⟩+ 1

2
∣−⟩) ⊗ (1

2
∣+⟩−

√
3

2
∣−⟩)

+ 1
2
(1

2
∣+⟩−

√
3

2
∣−⟩) ⊗ (

√
3

2
∣+⟩+ 1

2
∣−⟩)

=1
8
[(3
√

3 + 1) ∣++⟩− (3
√

3 − 1) ∣+−⟩+ (
√

3 − 3) ∣−+⟩+ (3 +
√

3) ∣−−⟩] .

(B.92)

Exercise 12 : Perturbed Harmonic Oscillator

1. We can directly use the formula seen in the course for a constant perturbation V that is
turned on at t = 0:

P0→n =
4∣⟨n∣ V̂ ∣0⟩∣2

h̵2n2ω2 sin2 (nωt
2
) . (B.93)

Since V = h̵γ(â2 + â†2), it is impossible to create two quanta from the state ∣0⟩. So, the
only possible final state at the 1st order of perturbation is the state n = 2.
In the limit t→ +∞, we have

P0→2 =
2π
h̵
tδ(2h̵ω − 0)∣⟨2∣ V̂ ∣0⟩∣2

=0. due to the Dirac delta

(B.94)

Therefore, in this limit, the 1st order theory predicts that the system will be in the ground
state of Ĥ0, ∣0⟩.
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2. In part 1, we have seen that the only state directly connected to ∣0⟩ by V̂ is ∣2⟩.

Since the variational principle is based on the calculation of the matrix element ⟨0′∣ (Ĥ0 + V̂ ) ∣0′⟩,
we only need to include the state ∣2⟩ in the variational ansatz:

∣0′⟩ = ∣0⟩+ α ∣2⟩ . (B.95)

This state is not normalized, which needs to be taken into account later. We will minimize
the expression of the energy:

E(α) =
⟨0′∣ (Ĥ0 + V̂ ) ∣0′⟩

⟨0′∣0′⟩ . (B.96)

Ĥ0 ∣0′⟩ =Ĥ0 ∣0⟩+ αĤ0 ∣2⟩
=2h̵ωα ∣2⟩ ,

(B.97)

V̂ ∣0′⟩ =h̵γ(â2 + â†2)(∣0⟩+ α ∣2⟩)
=
√

2h̵γα ∣0⟩+
√

2h̵γ ∣2⟩+
√

12h̵γα ∣4⟩ .
(B.98)

The last component is proportional to ∣4⟩ and does not play any role in the matrix element
and can be neglected.

E(α) =
√

2h̵γα +
√

2h̵γα + 2h̵ωα2

1 + α2

=2
√

2h̵γα + 2h̵ωα2

1 + α2 .

(B.99)

Let us look for extremal values

dE

dα
=2
√

2h̵γ + 4h̵ωα
1 + α2 − 2α(2

√
2h̵γα + 2h̵ωα2)
(1 + α2)2

=−2
√

2h̵γα2 + 4h̵ωα + 2
√

2h̵γ
(1 + α2)2 .

(B.100)

The condition dE
dα = 0 can be translated by:

√
2γα2 − 2ωα −

√
2γ = 0

⇒ α2 −
√

2ω
γ
α − 1 = 0

⇒ α = ω√
2γ
±
√

ω2

2γ2 + 1.

(B.101)

In the limit γ ≪ ω,
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α = ω√
2γ
± ω√

2γ

√
1 + 2γ2

ω2

≃ ω√
2γ
± ω√

2γ
(1 + γ

2

ω2)

=
⎧⎪⎪⎨⎪⎪⎩

√
2ω

γ +
γ
√

2ω
.

− 1√
2

γ
ω

(B.102)

Following the suggestion, it is clear that the solution that minimizes E(α) is α ≃ − 1√
2

γ
ω ,

so ∣0′⟩ = ∣0⟩− 1√
2

γ
ω ∣2⟩, and

E(− 1√
2
γ

ω
) = −h̵γ

2

ω
+O(γ

4

ω3) . (B.103)

We can neglect the denominator since 1
1+α2 ≃ 1 − α2, ad the term in α2 will dominate the

correction in order superior to α.
We find that min (E(α)) < 0, which is the unperturbed energy.

3. The variational approach provides an approximate result that includes all orders of per-
turbation in V̂ . Thus, we observe that ∣0′⟩ ≠ ∣0⟩.
In the first point, we described the exam same physical situation in the limit t→ +∞, but
the theory at 1st order predicts that the fundamental states stays that of Ĥ0, that is ∣0⟩.

B.5 2018 exam

Exercise 13 : 2 sites sing model with transverse field

1. We have
Ĥ = −Jσ̂z

1σ̂
z
2 − hσ̂x

1 − hσ̂x
2

Expressed in basis {∣−−⟩ , ∣+−⟩ , ∣−+⟩ , ∣++⟩}, we get

Ĥ = −J
⎛
⎜⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
− h
⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
− h
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

−J −h −h 0
−h J 0 −h
−h 0 J −h
0 −h −h −J

⎞
⎟⎟⎟
⎠

2. With ansatz
∣Ψ0⟩ = ∣−−⟩+ α ∣+−⟩+ α ∣−+⟩+ ∣++⟩ , α ∈ R

we get

⟨Ψ0∣ Ĥ ∣Ψ0⟩ = (1 α α 1)H
⎛
⎜⎜⎜
⎝

1
α
α
1

⎞
⎟⎟⎟
⎠
= (1 α α 1)

⎛
⎜⎜⎜
⎝

−J − 2hα
Jα − 2h
Jα − 2h
−J − 2hα

⎞
⎟⎟⎟
⎠
= 2(−J−2hα)+2(Jα2−2hα)
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and
⟨Ψ0∣Ψ0⟩ = 2(1 + α2)

thus
E(α) = ⟨Ψ0∣ Ĥ ∣Ψ0⟩

⟨Ψ0∣Ψ0⟩
= Jα

2 − 4hα − J
1 + α2

we derive
dE(α)
dα

= 2Jα − 4h
1 + α2 − 2α(Jα2 − 4hα − J)

(1 + α2)2 = 4hα2 + 4Jα − 4h
(1 + α2)2

We then have
dE

dα
= 0⇒ hα2 + Jα − h = 0

deducing α:

α =
−J ±

√
J2 + (sh)2
2h

= −β ±
√
β2 + 1

with β = J
2h .

We then compute α2

α2 = β2 ∓ 2β
√
β2 + 1 + β2 + 1 = 2β2 ∓ 2β

√
β2 + 1 + 1

replacing the new expression in E(α)

E(α) = 2Jβ2 ∓ 2Jβ
√
β2 + 1 + J + 4hβ ∓ 4h

√
β2 + 1 − J

2(β2 ∓ β
√
β2 + 1 + 1)

= 2Jβ(β ∓
√
β2 + 1) + 4h(β ∓

√
β2 + 1)

2
√
β2 + 1(

√
β2 + 1 ∓ β)

For “-”, we have
E(α) = − Jβ + 2h√

β2 + 1
and for “+”

E(α) = Jβ + 2h√
β2 + 1

Since J,h > 0, the fundamental state corresponds to α = −β +
√
β2 + 1.

3. We have

E(α) = −
(J2

2h + 2h)
√

J2

(2h)2 + 1
= − J2 + 4h2
√
J2 + 4h2

= −
√
J2 + 4h2 = E0

4. The exact fundamental state is given by

⎛
⎜⎜⎜
⎝

−J −h −h 0
−h J 0 −h
−h 0 J −h
0 −h −h −J

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1
αm

αm

1

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

−J − 2hαm

Jαm − 2h
Jαm − 2h
−J − 2hαm

⎞
⎟⎟⎟
⎠

We can then compute

−J − 2hαm = −J − 2h(− J
2h
+
¿
ÁÁÀ J2

(2h)2 + 1

= −J + J −
√
J2 + (2h)2

= −
√
J2 + (2h)2 = E0
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and

Jαm − 2h = −J
2

2h
+ J

2h
√
J2 + (2h)2 − 2h

=
−J2 + J

√
J2 + (2h)2 − 2h

2h

= −
J2 + (2h)2 − J

√
J2 + (2h)2

2h

= −
√
J2 + (2h)2(

−J +
√
J2 + (2h)2
2h

) = E0αm

Thus Ĥ ∣Ψ0⟩ = E0 ∣Ψ0⟩. For the most general state,

a ∣−−⟩+ b ∣−+⟩+ c ∣+−⟩+ d ∣++⟩

IIt is evident that we must have b = c and a = d since Ĥ is even under exchange 1⇔ 2. A
coefficient is found by normalization, and all that is left is one free parameter.

Exercise 14 : Entanglement entropy in the transverse Ising model
Going from

∣ψ0(αm)⟩ =
∣−−⟩+ αm ∣+−⟩+ αm ∣−+⟩+ ∣++⟩√

2(α2
m + 1)

,

and

S = Tr(ρ̂1(ln ρ̂1)) ρ̂1 = Tr2(ρ̂)

1. we know that

∣ψ0⟩ =
1
N

⎛
⎜⎜⎜
⎝

1
α
α
1

⎞
⎟⎟⎟
⎠

So

∣ψ0⟩⟨ψ0∣ =
1
N2

⎛
⎜⎜⎜
⎝

1 α α 1
α α2 α2 α
α α2 α2 α
1 α α 1

⎞
⎟⎟⎟
⎠

2. We calculate

ρ̂1 = ⟨−2∣ ρ̂ ∣−2⟩+ ⟨+2∣ ρ̂ ∣+2⟩

= 1
N2 (

1 α
α α2) +

1
N2 (

α2 α
α 1) =

1
2(α2 + 1) (

1 + α2 2α
2α 1 + α2)

= (
1
2

α
1+α2

α
1+α2

1
2
)

3. We now have
S = Tr[ρ̂1 ln(ρ̂1)]
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if ρ̂1∑j pj ∣j⟩⟨j∣, then S = ∑j ηj ln ηj . We can calculate the eigenvalues:

(1
2
− η)2 − α2

(1 + α2)2 = 0

1
2
− η = ± α

1 + α2

So
η = 1

2
∓ α

1 + α2

which we write

η1 =
(α + 1)2
2(1 + α2)η2 =

(α − 1)2
2(1 + α2)

We thus have

ln η1 = 2 ln[α + 1] − ln[2(1 + α2)]
ln η2 = 2 ln[α − 1] − ln[2(1 + α2)]

We can then calculate S:

S = (α + 1)2
1 + α2 ln[α+ 1] − (α + 1)2

2(1 + α2) ln[2(1+α2)] + (α − 1)2
1 + α2 ln[α− 1] − (α − 1)2

2(1 + α2) ln[2(1+α2)]

4. we wrote

α = − J
2h
+
√

J2

4h2 + 1

a J
h →∞

α → 0⇒ η1 =
1
2
, η2 =

1
2

S = 1
2

ln 1
2
+ 1

2
ln 1

2
= − ln 2

b J
h → 0 we have

√
1 + x2 ≈ 1 + x2

2 +⋯ and α → 1

η1 = 1, η2 = 0⇒ S = 0

When the interaction tends to infinity, the system is entirely entangled. When the interaction
is null, the state becomes separable.

Exercise 15 : Vibration modes of a triangular molecule
In the symmetry group D3h, we have the following elements:

• Identity

• Both C3 rotations around ẑ

• All 3 C2 rotations around the 3-axis linking the vertex to the center of the opposite edges.

• The mirror σh
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• S3: C3 and σh

• σv

Each atom can move in R3, we thus have dim(Γ) = 9

1. Let us calculate the characters of Γ We start by determining the representation associated
to the permutation of the 3 vertex, Γv:

• Γv(e) = 13 ⇒ χv(e) = 3 avec

1 ∶
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

2 ∶
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠

3 ∶
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

for the triangle

1 2

3

• Rotations C3

Γv(C3) =
⎛
⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟
⎠

Γv(C−1
3 ) =

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

χv(C3) = 0

• Rotations C2

Γv(C(1)2 ) =
⎛
⎜
⎝

1 0 0
0 0 1
0 1 0

⎞
⎟
⎠

Γv(C(2)2 ) =
⎛
⎜
⎝

0 0 1
0 1 0
1 0 0

⎞
⎟
⎠

Γv(C(3)2 ) =
⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

χv(C2) = 1

• Mirror σh: Γv(σh) = 13 ⇒ χv(σh) = 3
• Improper rotations S3.

Γv(σh)Γv(C3) = 1
⎛
⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟
⎠
= Γσ(C3) ⇒ χv(S3) = χv(C3) = 0
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• σv: Γv(σ(i)2 ) = Γv(C(i)2 ) ⇒ χv(σ(i)2 ) = χv(C(i)2 )

And determine the representations generated by displacement vector r = (x, y, z).

• Γr(e) = 1S

• Rotations C3

Γr(C3) =
⎛
⎜⎜
⎝

−1
2 −

√
3

2 0
√

3
2 −1

2 0
0 0 1

⎞
⎟⎟
⎠
χr(C3) = 0

Γr(C−1
3 ) =

⎛
⎜⎜
⎝

−1
2

√
3

2 0
−
√

3
2 −1

2 0
0 0 1

⎞
⎟⎟
⎠

• Rotations C2

Γr(C(1)2 ) =
⎛
⎜⎜
⎝

1
2

√
3

2 0
√

3
2 −1

2 0
0 0 −1

⎞
⎟⎟
⎠

• Mirror σh

Γr(σh) =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠

• S3:

Γr(S3) = Γr(σh),Γr(C3) =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

⎛
⎜⎜
⎝

−1
2 −

√
3

2 0
√

3
2 −1

2 0
0 0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

−1
2 −

√
3

2 0
√

3
2 −1

2 0
0 0 −1

⎞
⎟⎟
⎠

• Γr(σ(1)v ) =
⎛
⎜⎜
⎝

1
2

√
3

2 0
√

3
2 −1

2 0
0 0 1

⎞
⎟⎟
⎠

Γ = Γr ⊗ Γv

Tr(Γr ⊗ Γv) = ∑
iv

∑
ir

⟨ir ∣ ⊗ ⟨iv ∣ Γr ⊗ Γv ∣ir⟩⊗ ∣iv⟩

= ∑
ir

⟨ir ∣ Γr ∣ir⟩∑
iv

⟨Iv ∣ Γv ∣iv⟩ = Tr(Γr) ⋅Tr(Γv)

E 2C3 3C2 σh 2S3 3σv

Γv 3 0 1 3 0 1
Γr 3 0 −1 1 −2 1
Γ 9 0 −1 3 0 1

2. We can then determine the decomposition of Γ in irreducible representations.

Γ = b1Γ(1) + b2Γ(2) + b3Γ(3) + b4Γ(4) + b5Γ(5) + b6Γ(6)
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center of mass translation: Γ(3), Γ(5).

E 2C3 3C2 σh 2S3 3σv

Γ 9 0 −1 3 0 1
⊖Γ(1) 8 −1 −2 2 −1 0
⊖Γ(3) 6 0 −2 0 0 0
⊖Γ(5) 5 −1 −1 1 1 −1
⊖Γ(6) 3 0 −1 3 0 −1

Γ(3) + Γ(2) 3 0 −1 3 0 −1

we then get
Γ = Γ(1) ⊕ Γ(2) ⊕ 2Γ(3) ⊕ Γ(5) ⊕ Γ(6)

Alternatively, we can use equation

ba =
1
N

Nc

∑
µ

nµχ
∗
a(Cµ)χ(Cµ)

with N = 12, and find

b1 = 1 b2 = 1 b3 = 2 b4 = 0 b5 = 1 b6 = 1

3. The basis functions associated with the center of mass are r = (x, y, z). We can see from
the table that the corresponding representations are Γ(3) and Γ(5).

4. Rigid rotations transform like the angular momentum L = r × p, i.e., under rotations Rx,
Ry, Rz. Thus, the associated representations are Γ(2) and Γ(6).

5. Γ(1) and Γ(3) remain. Therefore, there exists a non-degenerate mode associated with Γ(1)
and two degenerate modes associated with Γ(3).

B.6 2019 Exam

Exercise 16 : Harmonic oscillator in external field (15/50 points)

1. The states with N = 1 are ∣a⟩ = ∣0,1⟩ and ∣b⟩ = ∣1,0⟩. Therefore, the question is whether
the two-dimensional space generated by these states corresponds to an irreducible repre-
sentation of dimension 2 of D4 or to two irreducible representations of dimension 1. We
have

⟨x∣a⟩ = ϕ0(x)ϕ1(y)
⟨x∣b⟩ = ϕ1(x)ϕ0(y)

with

ϕn(x) =
1√
2nn!

(mw
πh̵
)

1
4 (X − ∂

∂X
)

n

(exp(−X
2

2
))
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where X =
√
mω

h̵
x. So

ϕ0(x) = (
mw

πh̵
)

1
4 exp(−mωx

2

2h̵
) = C0exp(−mωx

2

2h̵
)

ϕ1(x) =
1√
2
(mw
πh̵
)

1
4 (X − ∂

∂X
) (exp(−X

2

2
)) = C1(Xe−

X2
2 +Xe−

X2
2 )

= (mw
πh̵
)

1
4 (2mw

h̵
)

1
2
xe−

mωx2
2h̵

⇒ ϕ0(x)ϕ1(y) = (
mω

πh̵
)

1
2
√

2mω
h̵

ye
−
mω

2h̵ (x2 + y2)

ϕ1(x)ϕ0(y) = (
mω

πh̵
)

1
2
√

2mω
h̵

xe
−
mω

2h̵ (x2 + y2)

Yet (x2 + y2) is D5 invariant. Furthermore, (x, y) transforms under E1, which is a repre-
sentation of dimension 2. Degeneracy is thus not lifted.

Alternative method Representation on (x, y)

• Representation on {(1,0), (0,1)}

Γ2(E) = (
1 0
0 1)

Γ2(C5) = (
cos(2π/5 =) − sin(2π/5)
sin(2π/5) cos(2π/5) )

Γ(C−1
5 ) = (

cos(2π/5) sin(2π/5)
− sin(2π/5) cos(2π/5))

Γ2(C2
5) = (

cos(4π/5) − sin(4π/5)
sin(4π/5) cos(4π/5) )

Γ2(C ′2) = (
−1 0
0 1)

• ⇒ Representation on ψ(x, y):

Γf(E)ψ(x, y) = ψ(Γ2(E−1)(x
y
)) = ψ(x, y)

Γf(C5)ψ(x, y) = ψ(Γ2(C−1
5 )(

x
y
)) = ψ(x cosα + y sinα,−x sinα + y cosα)

Γf(C5)ψ(x, y) = ψ(x cos(2α) + y sin(2α),−α sin(2α + y cos(2α))
Γf(C ′2)ψ(x, y) = ψ(−x, y)

with α = 2π/5.
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• In bais {∣10⟩ , ∣01⟩} ∝ {xe−β(x2+y2), ye−β(x2+y2)}.

Γf(E) = (
1 0
0 1)

Γf(C5) = (
cos(α) ∗
∗ cos(α)) → 2 cosα

Γf(C2
5) = (

cos(2α) ∗
∗ cos(2α)) → 2 cos(2α)

→ Γf = E1

2. For N = 2, we have {∣02⟩ , ∣11⟩ , ∣20⟩} and

(X − ∂

∂X
)(2Xexp(−X

2

2
)) = (2X2exp(−−X

2

2
) − [2exp(−−X

2

2
) + 2X(−X)exp(−X

2

2
)])

= (4X2exp(−X
2

2
) − 2exp(−X

2

2
))

⇒ ϕ2(x) =
1

2
√

2
(mω
πh̵
)

1
4
(4mωx

2

h̵
− 2) exp(−mωx

2

2h̵
)

= 1√
2
(mω
πh̵
)

1
4
(2mωx

2

h̵
− 1) exp(−mωx

2

2h̵
)

So we have

∣02⟩ ∶ ϕ0(x)ϕ2(y) =
1√
2
(mω
πh̵
)

1
2
(2mω

h̵
y2 − 1) exp(−mω

2h̵
(x2 + y2))

∣11⟩ ∶ ϕ1(x)ϕ1(y) =
1√
2
(mω
πh̵
)

3
2
xyexp(−mω

2h̵
(x2 + y2))

∣20⟩ ∶ ϕ2(x)ϕ0(y) =
1√
2
(mω
πh̵
)

1
2
(2mω

h̵
x2 − 1) exp(−mω

2h̵
(x2 + y2))

Since x2 + y2 transforms under A4 ⇒ ∣20⟩ + ∣02⟩ is distinct from ∣11⟩ and ∣20⟩ − ∣02⟩. (x2 −
y2, xy) transform together under E2. The degeneracy is only partially lifted; {∣11⟩ , ∣20⟩ −
∣02⟩} belong to the same representation, which has 1 non-degenerate state and 2 degenerate
states.

Alternative method N.B: This time the functions {(µx2−1)e−β(x2+y2), xye−β(x2+y2), (µy2−
1)e−β(x2+y2)} are not orthogonal. Therefore, we need to start by choosing an appropriate
basis. For example:

{(x2 + y2)e−β(x2+y2), xye−β(x2+y2), (x2 − y2)e−β(x2+y2)}

Indeed,

(x2 + y2)(x2 − y2) = x4 − y4

⇒ ∫ dxdy(x2 + y2)e−β(x2+y2)(x2 − y2)e−β(x2+y2) = 0

169



Quantum Physics II APPENDIX B. SOLUTIONS

In this basis...

Γf(E) =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

Γf(C5) =
⎛
⎜
⎝

1 ∗ ∗
∗ 2 cos(α) ∗
∗ ∗ 2 cos(α)

⎞
⎟
⎠

Γf(C2
5) =
⎛
⎜
⎝

1 ∗ ∗
∗ cos(α) ∗
∗ ∗ cos(α)

⎞
⎟
⎠

Γf(C ′2) =
⎛
⎜
⎝

1 ∗ ∗
∗ −1 ∗
∗ ∗ 1

⎞
⎟
⎠

knowing that

xy → (cos2(α) − sin2(α))xy = cos(2α)xy
x2 − y2 → (cos2(α) − sin2(α))(x2 − y2)

xy → (cos2(2α) − sin2(2α))xy = cos(4α)xy

3. For states with N = 3, we have {∣03⟩ , ∣12⟩ , ∣21⟩ , ∣30⟩} and

(X − ∂

∂X
)((4X2 − 2) exp(−X

2

2
))

= [(4X3 − 2X) exp(−X
2

2
) − {8Xexp(−X

2

2
) − (4X2 − 2)Xexp(−X

2

2
)}]

= (8X3 − 4X − 8X) exp(−X
2

2
) = 4 (2X3 − 3X) exp(−X

2

2
)

⇒ ϕ3(x) =
1√
3
(mω
πh̵
)

1
4 ⎛
⎝

2(mω
h̵
)

3
2
x3 − 3

√
mω

h̵
x
⎞
⎠

exp(−mωx
2

2h̵
)

So

∣03⟩ = ϕ0(x)ϕ3(y) =
1√
3
(mω
πh̵
) y(2mω

h̵
y2 − 3)exp(−mω

2h̵
(x2 + y2))

∣12⟩ = ϕ1(x)ϕ2(y) = (
mω

πh̵
)x(2mω

h̵
y2 − 1)exp(−mω

2h̵
(x2 + y2))

∣21⟩ = ϕ2(x)ϕ1(y) = (
mω

πh̵
) y(2mω

h̵
x2 − 1)exp(−mω

2h̵
(x2 + y2))

∣30⟩ = ϕ0(x)ϕ3(y) =
1√
3
(mω
πh̵
) y(2mω

h̵
y2 − 3)exp(−mω

2h̵
(x2 + y2))

At first perturbation order:
3√
3
∣21⟩− ∣03⟩ ∝ y(3x2 − y2)

− 3√
3
∣12⟩+ ∣30⟩ ∝ x(x2 − 3y2)

⇒ {1
2
( 3√

3
∣21⟩− ∣03⟩) , 1

2
( 3√

3
∣12⟩+ ∣30⟩)}
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transforms under E2 and are degenerate. then, orthogonal vectors are:

1
2
(∣21⟩+ 3√

3
∣03⟩) ∝ y (2mω

h̵
x2 − 1) + y (2mω

h̵
y2 − 3)

= y (2mω
h̵
(x2 + y2) − 4)

1
2
(∣12⟩ 3√

3
∣30⟩) ∝ x(2mω

h̵
(y2 + x2) − 4)

But, {x(x2y2), y(x2 + y2)} and {x, y} transform under E1. So both states are degenerate.
The degeneracy is thus partially lifted towards 2 pairs of states.

lternative method Again, we start by choosing an orthogonal basis without which we
couldn’t take the trace. We have:

{µy3 − 3y, µxy2 − x,µyx2 − y, µx3 − 3x}

which is not orthongonal, so we choose

{y(3x2 − y2), x(x2 − 3y2), y(µ(x2 + y2) − 4), x(µ(y2 + x2) − 4)}

Then:

Γf(E) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

Γf(C5) =
⎛
⎜⎜⎜
⎝

cos(2α) ∗ ∗ ∗
∗ cos(2α) ∗ ∗
∗ ∗ cos(α) ∗
∗ ∗ ∗ cos(α)

⎞
⎟⎟⎟
⎠

Γf(C2
5) =
⎛
⎜⎜⎜
⎝

cos(α) ∗ ∗ ∗
∗ cos(α) ∗ ∗
∗ ∗ cos(2α) ∗
∗ ∗ ∗ cos(2α)

⎞
⎟⎟⎟
⎠

We then get
Γj = E1 ⊕E2

degeneracy is partially lifted.

Exercise 17 : Entropy of a quantum system (15/50 points)

1. We have
S = −Tr[ρ̂ ln ρ̂]

if ρ̂ = ∑j nj ∣j⟩⟨j∣ then
S = −∑

j

nj lnnj
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and
ρ̂ = ∣ψ⟩⟨ψ∣ ⇒ n = 1

and so
S = −1 ln 1 = 0

2. we calculate
dS

dt
= −Tr [dS

dt
ln ρ̂ + ρ̂ ⋅ ρ̂−1 ⋅ dS

dt
] = −Tr [−i[H,S] ln ρ̂ − i[H, ρ̂]]

but Tr [−[H, ρ̂]] = 0

= i ⋅Tr [Hρ̂ ln ρ̂] − iTr [ρ̂H ln ρ̂] = iTr [Hρ̂ ln ρ̂] − iTr [H ln ρ̂ρ̂] = 0

where equality is due to the cyclic property of the trace.

3. In matrix form we have

Ĥ = (ω 0
0 −ω)n̂ = (

1 0
0 0)

we substitute in the equation to obtain

dρ̂

dt
= ( 0 −(γ/2 + 2iω)ρ12
−(γ/2 − 2iω)ρ∗12 0 )

solving the differential equation we get

ρ̂(t) = ( ρ11 ρ12e
−t(γ/2+2iω)

ρ∗12e
−t(γ/2−2iω) ρ22

)

4. For S = −∑j nj lnnj we can diagonalize ρ̂(t)

ρ̂(t) = 1
2
(Σ +Ω 0

0 Σ −Ω)

Σ = ρ11 + ρ22

Ω =
√
(ρ11 − ρ22)2 + 4 ∣ρ12∣2 ⋅ e−γt

for
ρ̂(0) = ∣ψ⟩⟨ψ∣ = 1

2
(1 1
1 1)

we have
ρ̂(t) = (1 + e

−γ/2⋅t 0
0 1 − e−γ/2⋅t)

then
S(t) = −1

2
(1 + e−γ/2⋅t) ln [1

2
(1 + e−γ/2⋅t] − −1

2
(1 − e−γ/2⋅t) ln [1

2
(1 − e−γ/2⋅t]

for t→∞,

ρ̂(∞) = (
1
2 0
0 1

2
)

S(∞) = −1
2

ln 1
2
− 1

2
ln 1

2
= ln 2
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Exercise 18 : Perturbed harmonic oscillator (20/50 points)

1. Hamiltonian is
H = − h̵

2

2m
d2

dx2 +
1
2
mω2x2eλx2

with λ > 0. We can write this hamiltonian like that of a harmonic oscillator with a
perturbation.

H =H0 + V (x)

H0 = =
−h̵2

2m
d2

dx2 +
1
2
mω2x2

V (x) = 1
2
mω2x2(eλx2 − 1)

The fundamental state of the harmonic oscillator is

ψ(x) = (β
h̵
)

1
4
e−β x2

2

with β = mω
h̵

, with eigenenergy E0 =
h̵ω

2
.

2. At 1st order, perturbation theory gives:

E = E0 +∆E, ∆E = ⟨ψ∣ V ∣ψ⟩

⟨ψ∣ V ∣ψ⟩ =
√

β

h̵

1
2
mω2

∞

∫
−∞

dxx2(eλx2 − 1)e−βx2

but ∫
∞

−∞
dxe−βx2 =

√
π

β
and so

d

dβ

∞

∫
−∞

dxe−βx2 = −
∞

∫
−∞

dxx2e−βx2 = d

dβ

√
π

β
=
√
π

2β3/2

so
∞

∫
−∞

dxx2e−βx2 =
√
π

2β3/2

Then

⟨ψ∣ V ∣ψ⟩ =
√

β

π

1
2
mω2

√
π

2
[ 1
(β − λ)3/2

− 1
β3/2 ] =

mω2

4
[
√

β

(β − λ)3 −
1
β
] = mω

2

4

√
β

(β − λ)3−
h̵ω

4

We use now λ≪ β in the series expansion.
√

β

(β − λ)3 =
1
β

¿
ÁÁÀ(1 − λ

β
)
−3
≈ 1
β

√
1 + 3λ

β
= 1
β
(1 + 3λ

2β
)

so
⟨ψ∣ V ∣ψ⟩ = mω

2

4

√
β

(β − λ)3 −
h̵ω

4
≈ h̵ω

4
(1 + 3h̵λ

2mω
) − h̵ω

4
= 3h̵2λ

8m
and

E = E =∆V = h̵ω
2
+ 3h̵2λ

8m
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3. Variational theory: β is the variational parameter, suppose λ ≪ β and λ ≪ mω

h̵
. We

already know ⟨ψ∣ V ∣ψ⟩ as function of β. Calculate the average kinetic energy on sur ψ(x).

dψ

dx
= (β

π
)

1
4
(−βxe−βx2/2)

d2ψ

dx2 = (
β

π
)

1
4
(β2x2 − β) e−βx2/2

⟨ψ∣ T ∣ψ⟩ = − h̵
2

2m

√
β

π
β

∞

∫
−∞

dx(βx2 − 1)e−βx2

= − h̵
2

2m
⎛
⎝

√
β

π
β2

∞

∫
∞

dxx2e−βx2 − β
⎞
⎠

= − h̵
2

2m
⎛
⎝

√
β

π
β2 1

2

√
π

β3 − β
⎞
⎠

= − h̵

2m
(−β

2
) = h̵

2β

4m

and

E(β) = h̵2

4m
β + mω

2

4

√
β

(β − λ)3

≈ h̵2

4m
β + mω

2

4
1
β
(1 + 3λ

2β
)

dE(β)
dβ

= h̵2

4m
− mω

2

4
1
β
− 3mω2

4
λ

β3

= h̵2

4m
− mω

2

4β2 (1 +
3λ
β
)

dE

dβ
= 0⇒ h̵2β2

mω2 = (1 +
3λ
β
)

h̵β

mω
=
√

1 + 3λ
β
≈ 1 + 3λ

2β
h̵

mω
β2 = β − 3λ

2
= 0

β =
1 ±
√

1 + 6h̵λ
mω

2h̵
mω
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Only the solution with “+” is valid, as β > 0

β =≈ mω
2h̵
+ mω

2h̵
(1 + 3h̵λ

mω
) = mω

h̵
+ 3λ

2

E(β) = h̵ω
4
+ 3h̵2

8m
λ + mω

2

4
1

mω
h̵ +

3λ
2
(1 + 3λ

2mω
h̵

)

= h̵ω
4
+ 3h̵2λ

8m
+ h̵ω

4
1

1 + 3h̵λ
2mω

(1 + 3h̵λ
2mω

)

≈ h̵ω
4
+ h̵ω

4
(1 − 3h̵λ

2mω
)(1 + 3h̵λ

2mω
) + 3h̵2λ

8m

= h̵ω
2
+ 3h̵2λ

8m
− 9h̵4λ2

16m2ω

which is a little better than the perturbation at first order.

B.7 2015 Midterm

Exercise 19 : Confined quantum stark effect (2.5 points)

1. The total potential is an infinit barrier with an inclined bottom with positive gradient
F = −eE (E < 0).

2. The Hamiltonian of the perturbed system is:

Ĥ = p̂2

2m
+ V (x̂) + Fx̂ (B.104)

In the case where F = 0 the eigenenergies of the confined electron are

En = n2 π
2h̵2

2mL2 , n > 0 (B.105)

and the corresponding wavefunctions are

φn (x) =
√

2
L

cos(nπ
L
x) , if n is odd

φn (x) =
√

2
L

sin(nπ
L
x) , if n is even

3. In the case where F ≠ 0, the energy correction to the fundamental state is the average
value on the non perturbed states

E
(1)
1 =

+L/2

∫
−L/2

φ∗1 (x)Fxφ1 (x)dx =
2F
L

+L/2

∫
−L/2

xcos2 (π
L
x)dx (B.106)

Directly noting that x↦ x cos2(x) is odd or by integrating by parts, we find E
(1)
1 = 0.
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4. The energy corrections for the first 2 excited states are given by

E
(1)
2 = 2F

L

+L/2

∫
−L/2

xsin2 (2π
L
x)dx

E
(1)
3 = 2F

L

+L/2

∫
−L/2

xcos2 (3π
L
x)dx

and involve odd integrands, which is the case for any n, hence we simply have E(1)n = 0 for
all n.

5. The energy correction E
(2)
1 for the ground state at order 2 involves non-zero matrix ele-

ments

V1j =
2F
L

+L/2

∫
−L/2

x sin(jπ
L
x) cos(π

L
x)dx

only if j is even. Indeed, in cases where j is odd, the elements are zero due to parity. If
we only consider the coupling with the first excited level, i.e., j = 2, the correction to the
ground state is simply

E
(2)
1 = − V

∗
21V21

E2 −E1
(B.107)

with
V21 =

16
9π2FL (B.108)

using the identity sin(x) cos(x) = sin(2x)/2 and integrating by parts x sin(2x). Thus,
finally,

E
(2)
1 = − 256

243π4
F 2L2

E1
(B.109)

6. The wave function of the ground state becomes asymmetric and localizes where the total
potential is weakest.

Exercise 20 : Particles interacting in a potential (2.5 points)

1. The 3 possible states are

ψ1 (x1, x2) = φ1 (x1)φ1 (x2)
ψ2 (x1, x2) = [φ1 (x1)φ2 (x2) + φ1 (x2)φ2 (x1)] /

√
2

ψ3 (x1, x2) = φ2 (x1)φ2 (x2)

2. 1st order corrections on the energies are

∆E(1)j = ⟨ψj ∣ V̂int ∣ψj⟩ (B.110)
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Using the definition of the delta function

∆E(1)1 = V0∫ ψ4
1 (x1)dx1

∆E(1)2 = V0
2 ∫ ψ2

1 (x1)ψ2
2 (x1)dx1

∆E(1)3 = V0∫ ψ4
2 (x1)dx1

3. ONly one possible state in that case

ψ1 (x1, x2) = [φ1 (x1)φ2 (x2) − φ1 (x2)φ2 (x1)] /
√

2 (B.111)

In this case the energy correction

∆E(1)1 = V0∫ [φ2
1 (x1)φ2

2 (x1) − φ2
1 (x1)φ2

2 (x1)]dx1 = 0 (B.112)

is zero. This is predictable as long as the potentials act when particles are at the same
position, impossible when the wavefunction is odd.

Exercise 21 : Quantum information (1 point)
To determine if the operating modes can be distinguished, it is necessary to find an observable

quantity that, when measured, yields different average values for the various operating modes.
A necessary condition for being able to distinguish two operating modes is that the associated
density matrices are different. Indeed, if the two density matrices coincide (in the same basis),
then the measurement of any observable will yield the same average values in both cases. Let’s
calculate ρ̂A, ρ̂B, and ρ̂C .

ρ̂A =
1
2
(∣ψp⟩⟨ψp∣ + ∣ψf ⟩⟨ψf ∣)

= 1
2
(∣0⟩⟨0∣ + ∣1⟩⟨1∣)

ρA =
1
2
( 1 0

0 1 )

ρ̂B =
1
2
(∣ψp⟩⟨ψp∣ + ∣ψf ⟩⟨ψf ∣)

= 1
4
(∣0⟩⟨0∣ + ∣1⟩⟨1∣ + ∣0⟩⟨1∣ + ∣1⟩⟨0∣

+ ∣0⟩⟨0∣ + ∣1⟩⟨1∣ − ∣0⟩⟨1∣ − ∣1⟩⟨0∣)

= 1
2
(∣0⟩⟨0∣ + ∣1⟩⟨1∣)

ρB =
1
2
( 1 0

0 1 )
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ρ̂C =
1
2
(∣ψp⟩⟨ψp∣ + ∣ψf ⟩⟨ψf ∣)

= 1
2
(∣0⟩⟨0∣ + 1

2
(∣0⟩ + i∣1⟩) (⟨0∣ − i⟨1∣))

= 3
4
∣0⟩⟨0∣ + 1

4
∣1⟩⟨1∣ − i

4
∣0⟩⟨1∣ + i

4
∣1⟩⟨0∣

ρC =
1
4
( 3 −i
i 1 )

It is therefore impossible for Bob to distinguish A from B. He can, however, distinguish C from A
and B. To show this, it suffices to find the eigenvalues of ρc. The simple solution to the eigenvalue
problem gives pC = (2 ±

√
2)/4 ≃ 0.854, 0.146. Bob only needs to choose an observable quantity

that has the form

OC = (
−1 0
0 1 )

in the basis that diagonalizes ρC . Measuring such an observable on the mixture C will yield −1
about 85.4% of the time and +1 about 14.6% of the time. For the instructions A and B, the
measurement of OC will always have an average value of zero.

B.8 2016 midterm

Exercise 22 : Impurity in a crystalline field (3 points) Degenerate perturbation theory
tells us that the first-order correction in V̂ is given by the diagonalization of the matrix:

M (1) = ⟨3,2,m∣ V̂ ∣3,2,m′⟩ (B.113)

where ∣3,2,m⟩ are the states of the 3d orbital. We can deduce the eigenvalues using group theory.
We know that V̂ is invariant under all operations of Td, in other words, [D̂(g), V̂ ] = 0, ,∀g ∈ Td.
If we decompose the subspace defined by the five states ∣3,2,m⟩ into a direct sum of irreducible
invariant subspaces of Td, we will have simplified the search for eigenvalues. Moreover, if each
Γ(n) from Td present in this decomposition appears with multiplicity one, we will have directly
diagonalized the problem.

1. The 3d states generate an irreducible representation D(2) of SO(3). This five-dimensional
representation is reducible under the Td group. Let’s calculate the character of D(2) for the
operations of Td. Recall that all rotations by the same angle belong to the same equivalence
class. Therefore, we can always consider rotations around the ẑ axis, for which the matrices
D(2)(α, ẑ) are diagonal:

D(2)(α, ẑ) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

exp i2α
exp iα

1
exp−iα

exp−i2α

⎞
⎟⎟⎟⎟⎟⎟
⎠

(B.114)

Thus, the trace of D(2)(α, ẑ) gives:

Tr(D(2)(α, ẑ)) = 2 cos(2α) + 2 cos(α) + 1 (B.115)
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Therefore, the character of C2 is:

χ(C2) = Tr(D(2)(π, ẑ)) = 1 (B.116)

For C3, we have:
χ(C3) = Tr(D(2)(2π/3, ẑ)) = −1 (B.117)

And for C4:
χ(C4) = Tr(D(2)(π/2, ẑ)) = −1 (B.118)

Since the 3d orbitals are even under inversion, the matrix associated with inversion is the
identity, and therefore:

χ(σd) = χ(Inv ⋅C2) = χ(C2) = 1 (B.119)
χ(S4) = χ(Inv ⋅C4) = χ(C4) = −1 (B.120)

The character table of D(2) under the operations of Td is:

E 8C3 3C2 6σd 6S4
D(2) 5 −1 1 1 −1 (B.121)

Without even using the formula for decomposition, we can see, with the help of the char-
acter table of Td, that:

χ(D(2)) = χ(Γ(3)) + χ(Γ(5)) (B.122)

And therefore:
D(2) = Γ(3) ⊕ Γ(5) (B.123)

As the multiplicities are one, we are sure that the matrix V̂ will be diagonal in the base
that corresponds to this decomposition, and the subspaces associated with Γ(3) and Γ(5)
will be degenerate. Thus, the 3d levels split into two levels with degeneracy two and three,
respectively. Group theory does not tell us which level has the lowest energy. We have
two possibilities :

3d
Γ(3)

Γ(5)
3d

Γ(5)

Γ(3)

2. The dipole operator is proportional to r = (x, y, z). According to the character table, we
see that (x, y, z) generates the irreducible representation Γ(5) of Td. There is only one
transition to examine, that between the two degenerate levels that we have just found. We
must determine the selection rules for a matrix element of the form:

⟨Γ(3)∣Γ(5) ∣Γ(5)⟩ (B.124)

We can decompose Γ(3) ⊗ Γ(5) into a direct sum and check if Γ(5) appears.

E 8C3 3C2 6σd 6S4
Γ(3) ⊗ Γ(5) 6 0 −2 0 0 (B.125)

Again, without performing any calculation, we notice that χ(Γ(3) ⊗ Γ(5)) = χ(Γ(4)) +
χ(Γ(5)), and thus Γ(3) ⊗ Γ(5) = Γ(4) ⊕ Γ(5). Since both ⟨Γ(3)∣Γ(5) and ∣Γ(5)⟩ involve the
same irreducible representation, the transition is allowed.
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Exercise 23 : Perturbed Harmonic Oscillator in 2-D (3 points)

1. Let’s start by calculating the first-order energy correction ∆E(1) by evaluating the per-
turbation V̂ on the non-perturbed eigenstate ∣ψ00⟩:

∆E(1) = ⟨ψ00∣V̂ ∣ψ00⟩ (B.126)

= ∫ dxdyϕ2
0 (x)ϕ2

0 (y)λxy (B.127)

(B.128)

= λ[∫ dxϕ2
0 (x)x]

2
(B.129)

Since ϕ0 is an even function, the integrand in (B.129) is an odd function, so ∆E(1) = 0.
The second-order correction is given by:

∆E(2) = ∑
m,n

⟨ψ00∣ V̂ ∣ψmn⟩ ⟨ψmn∣ V̂ ∣ψ00⟩
E00 −Emn

(B.130)

It can be noticed that at least the term associated with m,n = 1 contributes a non-zero
term since:

⟨ψ11∣ V̂ ∣ψ00⟩ = ⟨ψ00∣ V̂ ∣ψ11⟩ = λ[∫ dxϕ1 (x)ϕ0 (x)x]
2

(B.131)

involves an even integrand. It can be shown that this term is, in fact, the only one
contributing to the correction. Indeed, since x̂ ∝ â† + â, non-zero matrix elements cannot
occur for m,n > 1.

2. The states ∣ψ10⟩ and ∣ψ01⟩ are degenerate with an energy of E10 = E01 = ϵ1 + ϵ0. We
must develop an appropriate perturbation theory. Due to parity, we immediately have
⟨ψ11∣ V̂ ∣ψ00⟩ = ⟨ψ00∣ V̂ ∣ψ11⟩ = 0. On the other hand, we have:

⟨ψ10∣ V̂ ∣ψ01⟩ = λ∫ dxdyϕ2
1 (x)ϕ2

0 (y)xy

= λ∫ dx
√

2αx2
√
α

π
e−αx2

∫ dy
√

2αy2
√
α

π
e−αy2

= 2λ
π
[∫ dxαx2e−αx2]

2

Let
√
αx ∶= z, then dx = dz/√α, and we must now integrate

∫ dxαx2e−αx2 = 1√
α
∫ dzz2e−z2 (B.132)

by parts to finally find
⟨ψ10∣ V̂ ∣ψ01⟩ = ⟨ψ01∣ V̂ ∣ψ10⟩ =

λ

2α
(B.133)

Thus, we have the perturbation matrix:

M̂ (1) = ( ⟨ψ10∣ V̂ ∣ψ10⟩ ⟨ψ10∣ V̂ ∣ψ01⟩
⟨ψ01∣ V̂ ∣ψ10⟩ ⟨ψ01∣ V̂ ∣ψ01⟩

) = ( 0 λ/2α
λ/2α 0 ) (B.134)

Its eigenstates are
∣ψ±⟩ =

∣ψ10⟩ ± ∣ψ01⟩√
2

(B.135)
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and eigenvalues
∆E± = ±

λ

2α
(B.136)

giving energy corrections. These perturbative correctiosn are of order 0 in V̂ as expected
in degenerate pertubration theory.

B.9 2017 Midterm

Exercise 24 : Attrictive 1-D potential always has a bound state (2 points)
1. we have

∞

∫
−∞

dxψ2(x) = 1

∞

∫
−∞

dxA2e−2λx2 = 1

using −2λx2 = −y2

x = y√
2λ

dx = dy√
2λ

then
∞

∫
−∞

dxA2e−2λx2 =
∞

∫
−∞

dy√
sλ
A2e−y2

= A2
√

π

2λ
= 1

⇒ A = (2λ
π
)

1
4

2. here, we calculate

⟨ψ∣ T̂ (x) ∣T ⟩ =
√

2λ
π

∞

∫
−∞

dxe−λ2 (− h̵
2

2m
d2

dx2) e
−λx2

d2

dx2 e
−λx2 = d

dx
(−2λxe−λx2)

= −2λe−λx2 + 4λ2x2e−λx2

⟨ψ∣ T̂ ∣ψ⟩ = −
√

2λ
π

∞

∫
−∞

dx2λ h̵
2

2m
e−2λx2 +

√
2λ
π

4λ2 h̵
2

2m

∞

∫
−∞

dxx2e−2λx2

Integrating by parts
∞

∫
−∞

dxx2e−2λx2 = xe
−2λx2

−4λ

RRRRRRRRRRR

∞

−∞

+ 1
4λ

∞

∫
−∞

dxe−2λx2

= 1
4λ

√
π

2λ
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Finally

⟨ψ∣ T̂ ∣ψ⟩ =
√

2λ
π

h̵2

2m
(−2λ

√
π

2λ
+ λ
√

π

2λ
)

= h̵2

2m
λ

3. We have

I(λ) = ⟨ψ∣ Ṽ (x) ∣ψ⟩

=
√

2λ
π

∞

∫
−∞

dxV (x)e−2λx2

= h̵2

2m
λ + I(λ)

Calculating dI

dλ
:

dI(λ)
dλ

= 1
2
√
λ

√
2
π

∞

∫
−∞

dxV (x)e−2λx2 +
√

2λ
π

∞

∫
−∞

dxV (x)(−2x2)e−2λx2

= I(λ)
2λ
+
√

2λ
π

∞

∫
−∞

dxV (x)(−2x2)e−2λx2

THe condition minimizing energy is simply given by

d ⟨ψ∣ Ĥ ∣ψ⟩
dλ

= 0

so
h̵2

2m
+ dI(λ)

dλ
= 0

and
h̵2

2m
+ I(λ)

2λ
+
√

2λ
π

∞

∫
−∞

dxV (x)(−2x2)e−2λx2

and we can deduce an expression for I(λ) as asked

I(λ) = 2λ
√

2λ
π

∞

∫
−∞

dxV (x)2x2e−2λx2 − 2λ h̵
2

2m

One can understand this expression as if we had inverted the relation λ = λ(I) with I
becoming the new variational parameter. In this case, the expression below is an implicit
equation for λ(I). Let’s replace I(λ) in ⟨ψ∣ Ĥ ∣ψ⟩:

⟨ψ∣ Ĥ ∣ψ⟩ = h̵2

2m
λ + I(λ)

= − h̵
2

2m
+ 2λ
√

2λ
π

∞

∫
−∞

dxV (x)2x2e−2λx2

Since V (x) ≤ 0 and λ > 0, this expression is strictly less than zero. According to the
variational principle, the true ground state will have E0 ≤ ⟨ψ∣ Ĥ ∣ψ⟩λ < 0
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Exercise 25 : Second order polynomial symmetry in R3 (2 points)
Recall that D(R)ψ(r) = ψ(R−1r).

1. For a rotation around axis ẑ, we have

x→ x cosϕ + y sinϕ
y → x sinϕ + y cosϕ

So:

x2 → x2 cos2 ϕ + y2 sin2 ϕ + 2xy cosϕ sinϕ
y2 → x2 sin2 ϕ + y2 cos2 ϕ − 2xy cosϕ sinϕ
z2 → z2

xy → −x2 cosϕ sinϕ + xy(cos2 ϕ − sin2 ϕ) + y2 cosϕ sinϕ
xz → xz cosϕ + yz sinϕ
yz → −xz sinϕ + yz cosϕ

The matrix is then

D(ẑ, ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c2 s2 0 −cs 0 0
s2 c2 0 cs 0 0
0 0 1 0 0 0

2cs −2cs 0 c2 − s2 0 0
0 0 0 0 c s
0 0 0 0 0 −s c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where c = cosϕ and s = sinϕ. It is not unitary since ψj are not normalized.

2. We first need to calculate the characters associated with D. Since the character of D(n̂, ϕ)
only depends on ϕ (For teh same ϕ all D(n̂, ϕ) are in the same class).
We can use the matrix obtained in 1. For n̂ = ẑ.

χ(ϕ) = 3 cos2 ϕ − sin2 ϕ + 2 cosϕ + 1
= 2 cos2 ϕ − 2 sin2 ϕ + 1 + 2 cosϕ + 1
= 2 cos 2ϕ + 2 cosϕ + 2

We now need to calculate the characters of the irreducible representations D(l) of SO(3).
recall that:

D(l)(n̂, ϕ) = e−iϕn̂⋅L/h̵

We can continue using n̂ = ẑ. For this choice, recall that

D(l)(ẑ, ϕ) = e−iϕLz/h̵

which is diagonal in basis {∣l,m⟩} of eingestates for the kinetic moment.

D(l)(ẑ, ϕ) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

eilϕ 0 0 ⋯ 0
0 ei(l−1)ϕ 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ⋯ e−ilϕ

⎞
⎟⎟⎟⎟⎟⎟
⎠

183



Quantum Physics II APPENDIX B. SOLUTIONS

and

χ(l)(ϕ) = (eilϕ + e−ilϕ) + (ei(l−1)ϕ + e−i(l−1)ϕ) +⋯ + 1
= 2 cos(lϕ) + 2 cos(l(−1)ϕ) +⋯ + 1

We immediately recognize

χ(ϕ) = χ(0)(ϕ) + χ(2)(ϕ)

showing
D =D(0) ⊕D(2)

3. A linear combination that is invariant under all arbitrary rotation is

p(r) = x2 + y2 + z2

Since D(0) intervenes only once in the decomposition of D, this function is the one we
were looking for.

4. Going again from the matrix calculated in point 1 to calculate the characters linked to the
3 classes of C3v:

χ(ϕ) = 2 cos(2ϕ) + 2 cosϕ + 2

so

χ(E) = 6

χ(C3) = χ(ϕ =
2π
3
)

= 2 cos(4π
3
) + 2 cos(2π

3
) + 2

= 2(−1
2
) + 2(−1

2
) + 2 = 0

The σv operation is an improper rotation and we can no longer use the expressing above
for χ(ϕ). Note that, out of the 3 operations, σv is the one that corresponds to the
transformation

x→ −x
y → y

z → z

For this transformation, we have

x2 → x2

y2 → y2

z2 → z2

xy → −xy
xz → −xz
yz → yz

So
χ(σv) = 1 + 1 + 1 − 1 − 1 + 1 = 2
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Finally
χ ∶ 6,0,2

an, without using the equation for the decomposition using characters, we easily see that

χ = 2χ2 + 2χ3

So
D = 2Γ1 ⊕ 2Γ3

Exercise 26 : harmonic oscillator under a pulsed perturbation (2 points)

1. The temporal evolution operator from the interaction point of view, at 1s order in V̂ is

ÛI(t, t0) = Î −
i

h̵

t

∫
t0

dt1V̂I(t1)

= Î − i
h̵

t

∫
t0

dt1e
iĤ0(t1−t0)/h̵V̂ (t1)e−iĤ0(t1−t0)/h̵

The probability we are looking for is then

P0→1 = ∣⟨1∣ ÛI(t, t0) ∣0⟩∣
2

= ϵ
2

h̵2 −
h̵

2mω

RRRRRRRRRRRRR

t

∫
t0

dt1exp(iE1 −E0
h̵

(t1 − t0)) exp(− t
2
1
τ2) ⟨1∣ (â + â

†) ∣0⟩
RRRRRRRRRRRRR

2

where we have used ⟨1∣ Ĩ ∣0⟩ = 0.

accepting that t0 → −∞ and neglecting the phase exp(i(E1 −E=)
h̵

t0) in the integral, which

will give 1, after the square module.

P0→1 =
ϵ2

2mh̵ω

RRRRRRRRRRRR

∞

∫
−∞

dteiωte−t2/τ2
RRRRRRRRRRRR

2

where we have taken t→ +∞, E1 −E0 = h̵ω and â† ∣0⟩ = ∣1⟩.
We must now calculate the integral

∞

∫
−∞

exp(−( t
2

τ2 − iωt))

Completing the square:

t2

τ2 − iωt = t
2 − iωt − ω

2τ2

4
+ ω

2τ2

4

= ( t
τ
− iωτ

2
)

2
+ ω

2τ2

4
∞

∫
−∞

exp(−( t
2

τ2 − iωt)) =
∞

∫
−∞

dtexp(−ω
2τ2

4
) exp(−( t

τ
− iωτ

2
)

2
)

185



Quantum Physics II APPENDIX B. SOLUTIONS

Changing variables gives

t

τ
− iωτ

2
= x

τ (x + iωτ
2
) = t

τdx = dt
∞

∫
−∞

exp(−( t
τ
− iωτ

2
)2) =

∞

∫
−∞

dxτe−x2 = τ
√
π

So
P0→1 =

ϵ2πτ2

2mh̵ω
exp(−ω

2τ2

2
)

2. In the limit ωτ → 0, we have P0→1 = 0, and similarly in the limit ωτ →∞
In the first case, the perturbation acts on a very short timeframe keeping the same am-
plitude, making the energy go to zero. In the second case, the perturbation becomes
quasi-stationary and we cannot change the energy of the system.
The duration τm that maximizes P0→1 is given by

2τexp(−ω
2τ2

2
) − ω2τ3exp(−ω

2τ2

2
) = 0

dP0→1
dτ

= 0 ω2τ2 = 2 τm =
√

2
ω

3. To go from ∣0⟩ to ∣n⟩, one must apply n times â†. This is only possible at perturbation
order n, since V̂ n

I ∝ (â† + â)n and so the perturbation has at least once (â†)n.

B.10 2018 Midterm

Exercise 27 : Degeneracy lifting in the presence of a field(3 points)
No correction

Exercise 28 : Two fermions in a potential well(3 points)
No correction

B.11 2019 Midterm

Exercise 29 : Four coupled Harmonic oscillators(3 points)
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No correction

Exercise 30 : variational principle for two 1/2 spins (3 points)
No correction
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