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Chapter 1

Introduction to the Course

Considerations based on the symmetry of a physical system have always been used in the for-
mulation of general principles and in solving physical problems. Thus, the reader has certainly
already encountered several examples of the use of a symmetry principle. For instance, momen-
tum is conserved for a system that is invariant under spatial translation, and angular momentum
is conserved for a system that is invariant under rotation. More generally, symmetry properties
of a system provide us with two advantages. Firstly, they allow us to establish conservation
laws. Secondly, they introduce selection rules that greatly facilitate the calculation of the phys-
ical quantities of interest. However, it is not always intuitive how to take advantage of the
symmetry properties. Therefore, it is necessary to introduce a formalism that systematically
allows us to construct the link between symmetry properties and physical laws.

Most of the symmetry operations of a physical system are geometric transformations, such
as rotations around a fixed axis, translations, or inversions about a center of symmetry (i.e.,
the transformation of each point x into the point —x, with the point x = 0 being the center of
symmetry). If the application of a geometric transformation results in the transformed object
being indistinguishable from the object in its initial state (same position, same shape, same
orientation), then we say that the system is invariant under the considered transformation.

The set of operations for which a system is invariant forms a group in the mathematical sense.
The mathematical theory of groups, therefore, naturally comes into play in a formal treatment of
symmetry properties in physics. The application of group theory to physics was systematically
developed only in the early 20th century. Among the most important contributions to this field,
we highlight the work of Eugene Paul Wigner, who formalized the application of group theory
to quantum mechanics in his book Group Theory and Its Application to the Quantum Mechanics
of Atomic Spectra in 1931.

The branch of group theory that applies to physics is called group representation theory.
An important distinction within this theory is that between finite groups and infinite groups.
Indeed, some symmetry properties imply a finite number of symmetry operations. For example,
this is the case for the rotational symmetries of molecules. As an example, we introduce the
ammonia molecule in the following paragraph. This molecule is characterized by six rotational
symmetry operations: the identity transformation (a non-transformation is always a symmetry
operation!), two 120-degree rotations, and three mirror operations. On the other hand, some
systems are characterized by an infinite number of symmetry operations. For instance, a sphere
is invariant under a rotation through an arbitrary angle about the center of the sphere as the fixed
point. The theories of finite group representations and infinite group representations present
significant differences that necessitate separate treatment of the two domains.

The primary goal of this course is to introduce the theory of finite group representations and
its application to symmetry properties in molecular and solid-state physics. In the first part,
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we will introduce the necessary mathematical concepts. In the second part, we will discuss the
most important finite groups for our purposes and provide examples of the theory’s application.
We will briefly address the rotation-inversion group O(3), which is an infinite group, and its
applications.

1.1 An Example: Vibration Modes of a Molecule

In this section, we will address a physical problem using symmetry criteria. The goal is to show
that symmetry properties can significantly simplify the search for a solution to a problem. At
the current state of our knowledge, we will primarily use symmetry arguments by hand, meaning
relying on intuition, without having a systematic method with a set of rules at our disposal. The
ultimate goal of this course is to lay the foundations for such a method and provide examples
of its application.

Figure 1.1: Scheme of the NH3 molecule. In the figure, you can also see the numbering of the
four atoms and the choice of the reference frame.

Let’s consider the problem of the vibrations of the ammonia (NHs) molecule. This molecule
consists of three hydrogen atoms arranged in a triangle and one nitrogen atom located on the
vertical axis passing through the center of the triangle (see Figure . In molecular physics,
it is known that for small displacements from the equilibrium positions, the restoring forces
on the four atoms are proportional to the displacements. The molecule behaves as a system
of coupled harmonic oscillators with 12 degrees of freedom (three spatial coordinates for each
atom). Let’s denote Rj, Ro, R3, and Ry as the coordinates of the three hydrogen atoms and
the nitrogen atom. If the equilibrium positions of the four atoms are RJ(.O), where j =1,...,4,

then the displacement vectors are given by u; = R; — Rj(p). Let my and my be the masses of

the hydrogen and nitrogen atoms, respectively.

To realistically describe the harmonic modes of the molecules, a precise parametrization of
the elastic constants would be necessary. Such a parametrization should take into account that
the force between two atoms will be characterized by different elastic constants, depending on
whether the displacement direction is along the line connecting them or perpendicular to this
line. In general, we cannot express the harmonic force on an atom as the sum of harmonic
forces exerted by the other atoms because the harmonic constant for the force between two
atoms will be influenced by the presence of the other atoms. However, in the context of this
exercise, we can introduce a highly simplified model without fear, which allows us to familiarize
ourselves with the symmetry properties. We will assume that the system is simply characterized
by two harmonic constants: kgpg for the restoring force between two hydrogen atoms and
knp for the force between a hydrogen atom and the nitrogen atom. We have made a strong
approximation by assuming that the harmonic force between two atoms is isotropic. We will see
that this approximation results in accidental degeneracies, which are not strictly imposed by the
symmetry of the problem. Such degeneracies would not be present in a more realistic model of
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harmonic forces. In the following notes, we will discuss the problem of accidental degeneracies
in more detail and see that their existence is very rare: their occurrence is almost always a sign
of a poor consideration of the symmetry properties of the system.

Once the masses and elastic constants are given, we can write the potential energy as follows:

V(ul,UQ,U3,U4) = %k‘HH [(U1 — UQ)2 + (ll1 — 113)2 + (UQ — U3)2]
+ %]{NH [(u1—u4)2+(u2—u4)2+(u3—u4)2]. (1.1)

The force acting on a given particle is obtained from the gradient of this potential with
respect to the corresponding displacement variable:

0%u; oV
Fj=mj—st=—o— 1.2
ITM o2 T gy (1.2)
which allows us to write the equations of motion for the system:
82u1
MH 5 = ~kpyg(a; —u2) —kgy(u —uz) - kyg(ug —uy),
82112
muy o2 = —kpp(ua-w) -kgp(us —u3) - kyg(us —uy),
82113
MH o —kpp(uz —w) —kgp(us —u) —kng(us —wy),
82u4
MN =52 —knm(ug-w) - kyg(ag—az) - kyg (g - us). (1.3)

In this simplified notation, it is implied that the variables u;(¢) depend on time. Such a system
of coupled oscillators is characterized by "normal modes." A normal mode is a specific solution
to the equations ([1.3) where the 12 degrees of freedom depend on time according to the same
harmonic law:

u;(t) = ul” sin(wt) . (1.4)

Here, u;o) is a constant vector. By substituting the solution 1) into the set of equations
(1.3), we obtain:

w2u§0) = mLH :kHH(ugo) - uéo)) + kHH(uEO) - uéo)) + kNH(ugo) - uio)): ,
w2u§0) = mLH :kHH(ugo) - ugo)) + kHH(ugo) - ugo)) + k:NH(ugo) - uio)): ,
w2u§0) = mLH :k:HH(ugO) - ugo)) + k:HH(ugo) - uéo)) + k:NH(u:(SO) - uio)): ,
w2ui0) = mLN :k:NH(uiO) - ugo)) + kNH(uiO) - ugo)) + kNH(uflo) - uéo) . (1.5)

(0)

Subsequently, to simplify the notation, we will represent u; "’ as simply u;. We can define the
vector in the 12-dimensional space as:

u = (ug; ug; us; uy) . (1.6)

The system of equations ([1.5)) can be expressed in the compact form:
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Au = w?u, (1.7)

Here, A is the dynamic matrix of the system, obtained straightforwardly from the form (|1.5]
of the equation of motion.

Exercise: Write the matrix A.

The equation represents an eigenvalue problem. The solutions are obtained by diago-
nalizing the matrix A. The eigenvalues w? of A and the corresponding eigenvectors describe the
normal modes of vibration of the molecule. These solutions form a complete set. Any other so-
lution to the problem with given initial conditions can be expressed as a linear combination
of the normal modes found.

We note that the matrix A is not symmetric. This is due to the difference between the mass
of hydrogen myg and the mass of nitrogen my. To have a symmetric matrix, we would need
to rewrite the problem with displacement vectors normalized by the masses, q; = ,/mju;, with
j=1,...,4, mj = mg for the three hydrogens, and m; = my for nitrogen. We will not adopt
this change of variables since the non-normalized vectors u; provide us with a better intuition of
the molecule’s dynamics. It goes without saying that the matrix A describes the dynamics of a
system of coupled harmonic oscillators, and therefore, all its eigenvalues will be real for physical
reasons, regardless of its lack of symmetry.

The diagonalization of a 12 x 12 matrix cannot be solved analytically in the general case.
One might think, "No problem! We can always solve it numerically with a computer.” While this
is true, such an approach can sometimes limit our understanding of the results. Furthermore,
it should be noted that we have chosen an example in classical mechanics, where the number of
degrees of freedom is finite. However, most of the time, we will deal with quantum mechanics,
where the solution space is the Hilbert space of the wave function, a space of infinite dimensions.
In such cases, the computer often cannot assist us, and simplifications must be introduced.

We will now show how symmetry arguments allow us to solve this problem analytically.
Analytical mechanics allows us to make an initial consideration. A rigid body in a vacuum has
six degrees of freedom: three for the translation of the center of mass and three for rotation about
the principal axes of inertia. The molecule can, therefore, move through space at a constant
velocity in an arbitrary direction and rotate about an axis at a constant angular velocity. We
can always envision the molecule as a rigid body and place ourselves in the reference frame
where it is at rest. These six degrees of freedom are characterized by a zero frequency w = 0.

For example, free translation along the z-axis (see Fig. [1.2f(a)) is characterized by the
displacement vector (normalized):

1
u:§(17070717070717070717070) (18)

Exercise: Verify that the vector (1.8 is an eigenvector of the matrix A with an eigenvalue
of zero.
Free rotation around the z-axis (see Fig. [1.2(b)) is characterized by the displacement vector:

L(—1 V3 . _L —£,0;1,0,0;0,0,0).
V3

2277 2 2
In reality, a finite-length displacement, as illustrated in Fig. [1.2(b), involves a deformation
of the molecule and consequently a potential energy due to elastic forces. Such displacement
cannot be an eigenvector with an eigenvalue of zero for the matrix A in our problem formulation.

(1.9)
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A 4

Figure 1.2: (a) Example of translation proper mode of the center of mass. The blue vectors are
the displacement vectors u;. (b) Example of proper modes of free rotation around axis z.

In our problem formulation, the rotation modes are solutions to the eigenvalue problem, always
in the form of a combination of rigid rotation and deformation of the molecule. In this way,
the eigenvectors associated with these solutions have finite eigenvalues that correspond to the
eigenvalues of the associated deformation. For example, we can verify that the displacement
illustrated in Fig. [1.2(b) is composed of a rotation around the z-axis and a deformation in the
radial mode , which we will describe later. The corresponding eigenvalue is the same as
for this radial mode.

In principle, we can place ourselves in the space orthogonal to the one generated by these six
vectors—three for translation and three for rotation—using the Gram-Schmidt orthogonalization
process. The problem would then be reduced to diagonalizing a 6x6 matrix, which is still a
challenge for an analytical approach.

Suppose we perform an orthogonal transformation of the positions R; of the four atoms that
make up the molecule. Let’s denote the transformed vector as R} = SR;. The matrix S is a
three-dimensional orthogonal matrix. The orthogonality condition implies that S~'S = I, and
the elements of S are real. This transformation corresponds to an orthogonal transformation O
of the 12-dimensional displacement vector u, such that u’ = Ou and O~'O = I. For example, a
counterclockwise rotation of 27w/3 about the z-axis is given by:

0 05 0 u;
e e e s o0 0] w
Ou = (Sus; Sug; Suy; Suy) = 05 0 0 w | (1.10)
0 0 0 S uy
where
1 V3
-3 —% 0
S = @ -1 oo |- (1.11)
0 0 1

The inverse transformation is u = O~'u’. By substituting it into the equation of motion (1.7)),
we obtain:

A0’ = P07 (1.12)
Let’s multiply by O on the left side. We have:

Al =040 = W, (1.13)
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where we've defined A’ = OAO~.

The key point of this approach is to notice that there is a set of orthogonal transformations O
that leave the matrix A unchanged, i.e., A’ = A. For example, the rotation superimposes
the molecule on itself. The matrix does not change due to this transformation since it depends
only on the spatial shape of the molecule with the atoms in their equilibrium positions. In other
words, the rotation only involves a permutation of the identical hydrogen atoms and, therefore,
cannot influence the dynamics of the oscillations.

Exercise: Verify that, under transformation (1.10)), we have OAO™! = A.

We can seek all the transformations that have this property of invariance. These transforma-
tions form a set {O;} where j=1,..., N, and N is the cardinality of this set. We will call them
symmetry transformations of the system. An analysis of the shape of the molecule allows us
to find all the symmetry transformations by inspection. They are summarized in the following
scheme:

E Identity

C3 | Counterclockwise rotation of 27/3 around the z-axis
C3;1 | Clockwise rotation of 27/3 around the z-axis

o1 Mirror plane at x =0

09 Mirror plane at z = v/3y

03 Mirror plane at = = —/3y

We will see in the rest of the course that this set of transformations forms a group.

Exercise: Write the corresponding 12 x 12 matrices for the symmetry transformations in
the displacement space. This set of matrices is called a representation of the symmetry group.

Let’s now assume we have found a non-degenerate eigenvector u, of the matrix A, such that

Au,, = wf)up. For each symmetry operation O;, we have

OjAOj_»lup = Au, = wf,up. (1.14)
Let’s multiply by O}l on the left.

A(O7Mup) = w2 (051 ay) . (1.15)

So the transformed vector u]; = O}lup is also an eigenvector of the matrix A with the same eigen-
value wf) . Since we have assumed that u, is a non-degenerate eigenvector, it follows necessarily
that

u{, = ajuy, (1.16)

where a;; = 1. This must hold for all symmetry transformations O; of the molecule’s symmetry
group. In fact, if there existed an O; for which this property is not satisfied, we would have a
vector ué = Ol_lup that would be linearly independent of u,, and would simultaneously be an
eigenvector of A with the same eigenvalue, which would contradict our assumption.

The relationship is a very important property of non-degenerate eigenvectors. We
can summarize it as follows: if u, is a non-degenerate eigenvector of A, then for any symmetry
transformation O;, we have Ojflup = #u,. Unfortunately, the reverse is not generally true.
Indeed, suppose we have two non-degenerate eigenvectors u; and up with eigenvalues w% # w% .
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Suppose also that these two vectors behave identically under the symmetry transformations of
the group, i.e., O;lul = ojup and O;lug = Bjug, where o = 1, B; = =1, and «; = 3; for each
j. In this case, any linear combination of the vectors u; and us would also satisfy the property
for each j, but by construction, it would not lead to an eigenvector of A. Therefore, we
can use this property to more easily find the normal modes of vibration of the molecule, but we
must always check that a vector found in this way is indeed an eigenvector of A.

To begin with, let’s consider the vector corresponding to a displacement of the three hydrogen
atoms in the radial direction, while the nitrogen atom remains in its equilibrium position, as
illustrated in Figure (a). This vector is given by

Figure 1.3: (a) Non-degenerate vibration mode in the z = 0 plane. (b) Non-degenerate vibration
mode with vertical axis oscillation.

u, =

1 3 1 3 01
— —i,——,o;i, ~-,0;0,1,0;0,0,0] . (1.17)
B\ 27 2 2

\V)

Exercise: Verify that for such a displacement, the center of mass of the molecule remains
fixed. This assures us that it is a pure vibrational mode without a translational component.

It can be shown that u, is invariant under the symmetry transformations of the molecule,
ie., o1, 09, 03, Cs3, Cgl, E. So, u, is a good candidate to become a proper mode of the system.
To be sure, we need to verify it manually.

Exercise: Verify that the vector (1.17) is invariant under all the symmetry transformations
of the molecule. In particular, check that in the relation ([1.16]), we have «; = 1 for each j. Verify
that this vector is an eigenvector of the matrix A and derive the corresponding eigenvalue.

Now, let’s consider the displacement along the vertical axis where the nitrogen atom is moved
in the opposite direction to the plane of the three hydrogens, as illustrated in Figure [1.3(b).
This displacement is defined by the vector

1
/3 + 2

with u=3mg/my (under this condition, the center of mass remains fixed).

u, = (0,0,1:0,0,1;0,0,1;0,0, ) , (1.18)

Exercise: As with the vector (1.17)), verify the property of invariance of (1.18)), that a;; = 1

for each j, that it is an eigenvector of the matrix A, and derive the corresponding eigenvalue.

10
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This vector is, therefore, an eigenvector of the system with an eigenvalue different from
that of the vector , but with exactly the same symmetry (the same «;) as the latter. As
mentioned earlier, a linear combination of these two vectors would still be invariant under all
the symmetry operations of the molecule but would not be an eigenvector of the system. This
is why we need to verify that the found vectors are indeed eigenvectors. For another system, it
might have been more difficult to guess their form, or the proper eigenvectors could have been
linear combinations of these two vectors. Our symmetry considerations have still allowed us to
restrict ourselves to a dimension-2 subspace that can be analytically diagonalized easily. This is
the power of the method.

Now, suppose that an eigenvector u,; of matrix A does not satisfy the property O;up; = +u,
for all symmetry operations of the molecule. We have at least one transformation O; such that
Ojup1 = uyy is a vector linearly independent of u,;. We have seen that up must still be
an eigenvector of A with the same eigenvalue wﬁ as vector up;. So, we have found another
degenerate eigenvector with the first. We can repeat this procedure by applying all symmetry
operations to the two vectors found in this way. We have two possibilities.

(i) For all symmetry operations, the vectors Oju,1 and Ojup lie in the subspace generated
by u,; and uyo. In this case, we have defined an invariant subspace of dimension 2, i.e., all
symmetry operations applied to a vector in this subspace result in a vector that belongs to
the same subspace. To search for eigenvectors based on symmetry properties, we can proceed
by analogy with the case of a non-degenerate eigenvector. If we manage to find two linearly
independent vectors that generate an invariant subspace concerning the symmetry operations of
the molecule, these two vectors are good candidates to be degenerate eigenvectors of the matrix
A. We just need to verify that they are.

(ii) There is at least one symmetry operation of the molecule, O;, such that Oju,; or Oju,e
gives a vector upz that is linearly independent of uy,; and uy,s. This vector is an eigenvector
of matrix A, degenerate with the eigenvectors u,; and up. We can repeat the reasoning and
distinguish two more cases, depending on whether the 3-dimensional subspace found is invariant
or not. The reverse procedure tells us that, once we have identified an invariant subspace of
dimension 3, any three arbitrary linearly independent eigenvectors in this subspace are good
candidates to be degenerate eigenvectors of the system.

With this procedure, we can decompose the 12-dimensional vector space of the problem
into several subspaces that are invariant under the symmetry operations of the molecule. This
procedure simplifies the task of finding the eigenvectors of the system. In the rest of the course,
we will see that this approach is called the "decomposition into irreducible representations of
the symmetry group of the system." We will learn techniques for performing this decomposition
systematically and finding the eigenvectors of the system under study.

Now, let’s go back to our ammonia molecule. Consider the displacement vector illustrated

in Figure [L.4(a).

U, = -—,0;-1,0,0;0,0,0 1.19
pl \/g ( )

1 (1 V3 1 V3
ilz 2" ’

Exercise: Verify that the vector (1.19)) is an eigenvector of the matrix A. Verify that it is
not invariant under the symmetry operations of the molecule.

Since this vector is not invariant, we can obtain other degenerate eigenvectors with the first
one by applying the symmetry operations of the molecule. Note that the displacement is
only in the z = 0 plane, and all symmetry operations leave this plane invariant. Therefore, the
invariant subspace cannot have more than two dimensions. Without the effort of generating the
second vector by applying a symmetry operation, we can choose any second linearly independent

11
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Figure 1.4: Proper vibration modes, degenerate in the plane z = 0. Displacements in (a) and (b)
transform under symmetry operations of the molecules like the  and y components of a vector
in the plane.

vector in the plane of the three hydrogens. Let’s choose the vector orthogonal to the first one,
obtained by a 7/2 rotation of the vectors uj, ug, us, as illustrated in Figure (b)

upgzi(—ﬁ, 1,0;6, 1,0;0, -1,0;0,0, O) ) (1.20)
V3 272 22

This vector is also an eigenvector of the matrix A. This choice of the two vectors is not arbitrary.
It could be shown that the two vectors (1.19) and (1.20) behave under the symmetry operations
of the molecule as the x and y components of a vector in the z = 0 plane. This means, for
example, that for each j, if Oju, = aju, + bjuy, then the coefficients a; and b; are the
same as for the rotation S;X = a;X + b;§ in three-dimensional space. Later, we will see that,
for molecules and solids, the invariant subspaces can be grouped into a very small number of
categories - the irreducible representations - based on the transformation properties of vectors
under the symmetry operations. We will learn to recognize these categories and derive the base
vectors using systematic methods.

Our journey is nearly complete. We have found the three translational modes, the three
rotational modes, and four proper vibrational modes. We could, through the Gram-Schmidt
orthogonalization procedure, find the two remaining eigenvectors and diagonalize the problem
in the corresponding subspace. The method used above further simplifies the task. Consider
the mode illustrated in Figure [1.5a) and (c).

1
Uy = ————
P31 2

with b = 3H/L, where H and L are the height and side of the triangle formed by the three
hydrogens. It is an eigenvector of matrix A, and we can verify that it is not invariant under
all symmetry operations. Since we have only two dimensions left, it is clear that the invariant
subspace for this vector is of dimension two. A second vector is illustrated in Figure [L.5[b) and

(d).

(1,0,b;1,0,-b;1,0,0; -, 0, 0) (1.21)

1
Up=—-———
! V3 +6a? + p?

with a = b/\/3. The constants a and b are chosen so that the two modes do not contain a rigid
rotation of the molecule.

0,1,a;0,1,a;0,1,-2a;0, -, 0) , (1.22)

12
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Figure 1.5: Degenerate vibrational eigenmodes. Since these two modes involve deformation in
all three dimensions, we have depicted, for each component, the perspective view (top: (a) and
(b) for both components) and the projected view on the horizontal plane (bottom: (c) and (d)).

13



Chapter 2

Mathematical Introduction

The purpose of this chapter is to summarize the algebraic concepts necessary for formulating
the theory of group representations.

2.1 Applications and Binary Operations

Consider two sets, X and Y. A function (or map) f from X to Y is defined such that, for each
element x belonging to X (denoted as = € X), there exists a unique element y in Y associated
with z. We represent this element as y = f(z) and call it the image of x under the function f.
We write it as:

f: X->VY | zoy=f(z). (2.1)

The set X is called the domain of f, and Y is its image. The set of elements in Y, which

are images under f of elements in X, is called the image of X under f and is denoted as f(X).
In general, f(X) is a subset of Y (we write f(X) cY) and is not necessarily identical to Y.
The function f is injective if:

fl@)=f@") = z=2". (2.2)

For an injective function, two elements of X cannot have the same image in Y. A function
is surjective if f(X) =Y. For a surjective function, every element of Y is the image of at least
one element of X. A function that is both injective and surjective is called bijective.

Let f be a function from X to Y and g be a function from Y to Z. The composition or
product of these two functions h: X — Z is defined as:

h(z)=g(f(x)) . (2.3)
The function h acts from X to Z and is denoted as:
h=g-f (2.4)

or simply ¢gf when there is no possibility of confusion with other operations. It should be
noted that f - g is not necessarily well-defined, and when it exists, it is not necessarily equal to
g- f. For example, consider real-valued functions f(z) = 22 and g(y) = e¥. We have:

2

(9-f)(x)=g(a®)=¢" (2.5)

and

(f-9)(x)=f(e") =€*. (2.6)
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The composition of functions is associative, meaning that if u, v, and w are functions from
X toY,Y to Z, and Z to W, respectively, then:

(w-(v-u))(x) = ((w-v)-u)(z). (2.7)

For each z € X, both sides of this equation correspond to the element:

w(v(u(z))) (2.8)

in W. Therefore, we can write:

(w-(v-uw)(z) =((w-v) u)(z)=w-v-u. (2.9)

If f: X - Y is a bijective application, then for each element y in Y, there is a unique element
x in X such that f(z) =y, and, naturally, each element z has an image in Y. Therefore, we can
define a bijective application Y - X, y — x such that y = f(x). This application is called the
inverse of f and is denoted by f'.

Often, we consider applications from a set X to itself. An example is given by real (complex)
functions of a real (complex) variable. We define the identity application as:

e: X->X | zvoe(x)=x. (2.10)
This application is clearly bijective. If f: X — Y is a bijective application, f~! exists, and
we have:
(D)= (2.11)
for each z. Therefore, we write:

flf=ex (2.12)

where we denote the identity application of X by ex. Note that we also have:
f-ft=ey (2.13)

Theorem. Let X and Y be two sets containing the same finite number n of element{]] The
following three statements are equivalent:

(i) f: X =Y is surjective,

(ii) f: X = Y is injective,

(iii) f: X — Y is bijective.
Proof:

(i) = f(X) =Y. Thus, f(X) is composed of n elements, which implies (ii).

(ii) = f(X) is composed of n elements. It follows that f(X) =Y, which can be reduced to
property (i).

Since (i) and (ii) are each a consequence of the other, (iii) is also true, and the theorem is
thus proved.

The cartesian product X xY of two sets X and Y is the set of all ordered pairs (x,y) where
reXandyeY. IfY = X, then X xY is denoted by X?2. For example, if the set of real numbers
is denoted by R, then R? is the set of points in a two-dimensional space (a plane). Similarly, we
can define X3, X4, and so on. The graph of a function f: X — Y is the subset of X x Y that
contains the ordered pairs (z, f(x)).

A relation R between elements of the sets X and Y is defined as a subset of X xY. We say
that z € X is related by R to y € Y if (z,y) € R. In this case, we write zRy.

'Note that this theorem is not valid for two sets with different numbers of elements.
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An equivalence relation - denoted by x ~ y - is a relation between elements of a set X that
satisfies the following three conditions:

(i) z ~ x for each z € X (reflexivity).

(ii) x ~y = y ~x (symmetry).

(iii) x ~y and y ~ 2 = x ~ 2 (transitivity).

If in a set S we have defined an equivalence relation, then the set of y € S that are equivalent
to x is called the equivalence class of . We denote this set by:

Co={y; y~a}. (2.14)

Naturally, C'; contains the element x.

Theorem. An equivalence relation among the elements of a set S divides the set into disjoint
equivalence classes. This means that

(i) z € Cy,

(i)zry o Cp=Cy & C,nCy+a
Proof: (i) is evident. We demonstrate (ii) in three steps.

a. x ~y = Cp = Cy. Indeed, if z € Cy, y ~ 2, by transitivity z ~ , and thus z € Cj.
Therefore, every element of Cy is also an element of C,. In the same way, we can demonstrate
that every element of C; is also an element of C,. Consequently, C, = C,,.

b. C; =Cy = C;nCy # @ since x € C; and x €Cy, implying C, n C, # @.

c. ConCy+@ = x~y. Since C, nCy # @, it contains at least one element, let’s say z. So,
z € Cp and z € Cy, which implies z ~ z and z ~ y, from which we deduce that x ~ y.

These three implications complete the proof of the theorem.

Consider a set S. An internal binary operation on S is a function
f:8%x85->S. (2.15)

This means that for each ordered pair (x,y) of elements from S x .S, we assign a unique element
z€S : z= f(x,y). This operation is typically denoted by zy and is called the product of x and
y (in that order). Here are examples of internal binary operations:

(i) Real number multiplication (z,y € R)

(z,y) »zyecR. (2.16)

(ii) Real number addition
(z,y) P z+y. (2.17)

An internal binary operation is called commutative if
Ty =yr (2.18)
for all z,y € S. It is called associative if, for all x,y,z € S,
x(yz) = (zy)z. (2.19)

In this case, the parentheses are redundant, and we can represent the result of the operation as
zyz. We also define 22 = zz, 23 = 2z, and so on.

Let S be a set, and R an equivalence relation. The equivalence classes form a set called the
quotient S/R of S by R. The function

S = SIR (2.20)
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defined by
x> Cy (2.21)

is surjective since every element of S/R is an equivalence class.

Let S be a set with an internal binary operation. If elements ep and ey exist in S such
that zerp = x and epx = x for every = € S, then we call these elements the right identity and left
identity, respectively. If ey and eg exist at the same time, then they coincide, and we call this
unique element e. In this case, we have xe = ex = x for every z € S. In fact, from the definition
of er, and er, we have epeg = e, = eg. If there were two distinct identity elements e and e’ such
that ex = xe = x and ¢’z = xe’ = z for every z, then e = ¢’e = ¢’. If an element x in S has a right
inverse element z', such that za, = e, we say that x; is a right inverse of x. Similarly, a left
inverse is defined as an element z such that e =e. If 2, and 2/ exist at the same time, and
the operation is associative, then z7, = 2 . Indeed,

xp =exy = (2 x)y = 2] (vxy) = xe =2 . (2.22)
Therefore, for an associative binary operation, z’ is a right inverse of x if

!/ !/
xxr =r'r=e. (2.23)
The inverse of x is unique. Indeed, if " was another inverse of =, we would have,

2 =a"e=a"(x2") = (a"2)2’ =ex’ = 2. (2.24)

We denote the inverse of x as #™'. For example, in the set of real numbers R, 0 and 1 are
respectively the identities (also called neutral elements) for addition and multiplication. The
inverse of x for addition is —z. The inverse for multiplication is 1/z if z # 0.

Theorem. Consider a set S with an associative internal binary operation and an identity
element e. If z and y have inverses ™' and y~!, then zy has an inverse, and

(zy) =y 2t (2.25)
Proof:
(zy)(y ™) =a(yy Dot =weax™ = za = e (2.26)
and
(v a )@y =y (@ )y =y ey =y ly=e (2.27)

2.2 Abstract Group Theory

A set G, equipped with an associative internal binary operation, is called a group if it contains
an identity element (also called a neutral element) and the inverse of each of its elements.
To ensure that G is a group, the following must be verified:

(i) The binary operation is internal, meaning G is closed under this operation,

)
(ii) The operation is associative,
(iii) There exists an identity element e € G, meaning ze = ex = z for each = € G,
)

(iv) 2 G = 27l eq.

17
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If the binary operation is commutative (i.e., xy = yx for every x,y € G), then the group is called
Abelian. If a group contains n elements, it is said to be of order n. Such a group is called finite.
A group that is not finite is called infinite.

Examples of groups:

(i)

The set R of real numbers equipped with addition is an Abelian group. The identity
element is 0, and the inverse of = is —z.

The set R of real numbers equipped with multiplication is not a group. Indeed, the element
0 has no inverse. However, R—{0} equipped with multiplication is an Abelian group. The
identity element is 1, and the inverse of z is 1/z if z # 0. If C is the set of complex
numbers and @ is the set of rational numbers, then C' - {0} and @ - {0} equipped with
multiplication are Abelian groups.

The set Z of integers equipped with addition is a group. It is not a group when equipped
with multiplication.

The set {1, -1} equipped with multiplication is a group.
If n is a positive integer and w = €2™/™ then the set
{1, w,w?,..., w1}

equipped with multiplication is a group. The identity element is 1, and the inverse of w*
(0<k<n-1)is w™*. Multiplication by € transforms the complex number

2 =re

into

2= ey = re(079)
This operation is a rotation of all points in the complex plane by an angle ¢ around the
origin. The numbers 1, w, w?,..., w™ ! represent rotations by 0, 27/n, 2(27/n),..., (n -
1)(27/n) around the origin. The rotations by these angles around a fixed axis thus form

an Abelian group.

Let G be a group with the identity element e and H be a subset of G. We say that H is a
subgroup of G (equipped with the same binary operation as G if

(i)
(i)

r,ye H = xye H,

reH = z71eH.

Clearly, properties (i) and (ii) imply that e € H. Examples of subgroups include:

(i)
(i)
(i)
(iv)

G is a subgroup of G,

{e} is a subgroup of G,

If G = R equipped with addition, then Z is a subgroup of G.

If G = R-{0} equipped with multiplication, then {1, -1} is a subgroup of G.

Rearrangement Theorem. Let G be a group, and m one of its elements. The mappings

G—->G:xz~»mz,

T = Tm

are bijective.
Proof:

18
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(i) The mapping x + ma is surjective because for every y € G, m™'y € G, and m(m™1y) = y.
Therefore, y is the image of m ™'y under this mapping.

1 1

(ii) The mapping = — max is injective because mxz =mz’ = m™'mz =m™"ma’ = =2’

The proof is similar for the second mapping. This shows that the sets mG and G'm are rear-
rangements of the elements of G. This theorem allows us to write multiplication tables for finite
groups of small order. The multiplication tables are written as follows:

‘ a b c
ala® ab ac
b|ba b be

2

ca c¢cb ¢

The Rearrangement Theorem states that each row and each column of the table contains all
the elements of the group. No element is repeated on a row or column. Therefore, each row
or column is a rearrangement of the group’s elements. As an example, we can write the only
possible multiplication tables for groups of order two and three.

e a e a b

el e ele a b
a e ala b e
blb e a

The Rearrangement Theorem shows that a group of order n is a subgroup of the permutation
group of n objects (Cayley’s theorem). This theorem is very important as it significantly reduces
the number of possibilities for writing the multiplication table of a group. Thanks to this
theorem, we have seen that a group of order 3 is unique, and we could write its multiplication
table without specifying the nature of its elements or the internal operation. More generally, we
can construct multiplication tables using two fundamental criteria. Firstly, the table must satisfy
the Rearrangement Theorem. Secondly, the resulting table must also satisfy the associative
property, i.e., a(bc) = (ab)c, for all elements. In Exercise 2 of the Series, we will see how, based
on these two criteria, we can obtain the only two non-equivalent groups of order 6.

Consider an element a of a finite group G. The set {e,a,a?,...} is a subset of G, and it

is therefore finite. Hence, there exist integers m and k, with m > k, such that a™ = oa* or

a™ % = a" = ¢, where n = m — k. Thus, it is always possible to find a power of a equal to the
identity element e. Let n be the smallest positive integer for which this property is satisfied.
Then, we have

H={e,a,a®, ...,a" 1} (2.28)

is a subgroup of G. We say that H is generated by a. A group in the form of H is called a
"cyclic" group. It is clearly abelian.

A "proper" subgroup of G is a subgroup other than {e} and G.

Let G be a group, and let H be one of its proper subgroups. We define an equivalence relation
among the elements of G as follows: if 2,y € G and 7'y € H, then z and y are equivalent, and
we write x ~ y. Let’s prove that this is indeed an equivalence relation.

ly=eecH.

(i)  ~x since z~
(ii) x~y=y~x since s lye H= (z7ly) =y lx e H.

(iii) z~yand y~z=>a ~2,since v lye Hand y lze H = o lyy lz=a"l2e H.
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This equivalence relation allows us to divide the elements of G into disjoint classes. If 7'y € H,
then y is equal to an element of H multiplied on the left by x. We denote the set constructed

in this way by the symbol
Cy=xH (2.29)

and call it the "left coset." The map H — xH is bijective. Indeed, each element z € xH is the
image of 7'z € H, which implies that the map is surjective. It is also injective, as for v,y € H,
we have zy =zy’ =y =1y

We can also define a second equivalence relation x ~ y if y2~' € H. We can thus introduce
the concept of a "right coset" (Hz) in the same way.

Theorem. If GG is a finite group and H is a proper subgroup of G, then the order of H is a
divisor of the order of G.

Proof: Consider the left cosets of H. They are either all disjoint or identical (since they
are equivalence classes). If there are n distinct left cosets, their union is G. Therefore, if we
denote the orders of G and H as g and h, respectively, then g = nh, and the theorem is proved.
A simple corollary is that a group of prime order has no proper subgroups.

We will now introduce the concept of a "homomorphism." A group G is said to be "homo-
morphic" to a group H if there exists a mapping h: H - G such that

(i) h is surjective, i.e., h(H) =G.
(ii) h(zy) = h(x)h(y) for every pair of elements z, y in H.

Note that if H = {e, z, y,...}, the elements h(e), h(z), h(y) in G are not necessarily distinct.
The only necessary condition is that each element of G is the image of at least one element of
H. The mapping h is called a "homomorphism" and is denoted by G = hom H. For example, if
G consists of a single element €', then h(x) = €’ for all z € H is a homomorphism. The group
G = {1, -1} equipped with multiplication is homomorphic to Z = {..., -3,-2,-1,0, 1, 2,...}
equipped with addition, with

if x is even

1
) ‘{ -1 if 2 is odd. (2:30)

Theorem. If the group G = {¢’, d/, ¥’,...} is homomorphic to H = {e, a, b,...} by the
homomorphism A, then
h(e) =¢ (2.31)

and
h(z™h) = h Y (z), (2.32)

for all x € H. Proof:

h(z) = h(ze)=h(x)h(e)
h(z) = h(ex)="h(e)h(x)

where
h(e)h(z) = h(z)h(e) = h(x) (2.33)

which implies that h(e) is the neutral element of G and it is necessarly equal to e’.

h(zz™) = h(z)h(z™) =h(e)=¢
h(z7'z) = h(z"Y)h(z)=h(e)=¢€
which implies
h(z)h(z™) = h(z h(z) = € (2.34)
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and thus h(z™1) is the inverse of h(x) in G.

We also introduce the concept of an "isomorphism." Two groups, H and G, are isomorphic if
there exists a bijective mapping h : H — G such that h(zy) = h(z)h(y) for all z,y € H. Clearly,
if G is homomorphic to H and H is homomorphic to G, then H and G are isomorphic.

Theorem. Let G = hom H. The set of all z € H such that h(z) = €’ is a subgroup of H
called the kernel of h. We denote it as ker h.

Proof:

(i) e eker h since h(e) =€’
(i) zeker h=h(z)=¢ = h(z) =h1(z)=¢.
(iii) z,y eker h = h(zy) = h(x)h(y) = e’ = xy € ker h.

Now, let’s introduce the concept of a "conjugacy class." In a group G, if x and y are elements
of G, we say that y is a conjugate of x if there exists an element u in G such that

y=ulzu. (2.35)

The relation we have just defined is an equivalence relation. Indeed:

1

(i) x = e ‘xe, meaning x ~ z,

(i) y=ulzu=>z=uyut = (v V) yut s>z ~yify~zx,
(iii) =~y and y ~ z = there exist v and v in G such that z =« 'yu and y = v™'zv. This implies
r=u v zou = (vu) L z(vu) = 2 ~ 2.

By this theorem, the conjugation relation divides the elements of the group G into distinct
sets called "conjugacy classes" or simply "classes." In the following, we will use the term "class'
without further qualification to refer to a conjugacy class. We denote the set composed of
elements conjugate to x by the symbol C;.Please note that in general, C is not a group.
Also, notice that the class C, consists only of the element e: C, = {e}. The function f, defined
as

fu: Co—=Cqsx e fu(x) = utzu (2.36)

with x € C, and w € G is bijective. Specifically, f, is surjective because if z ~ a, then x is the
image of uzu™' ~ @ under f,. It is also injective as fy(z) = fu(z') = v lzu=v'o'u =z = 2.

Hence, the set u'C,u is just a rearrangement of C,. Thus, we can write
uwtChu = C,. (2.37)

A subgroup N of a group G is called an "invariant subgroup" or a "normal divisor" of G if it
consists only of entire conjugacy classes. This means that the conjugation of all elements of an
invariant subgroup by an element u of G' simply rearranges its elements, i.e.,

wNu=N. (2.38)

We can also write
Nu=uN. (2.39)

Thus, the right and left cosets of an invariant subgroup are equal. Consider now a set F
composed of the right cosets of N:
Cy = Nu. (2.40)
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We now define a composition law for the elements C,. Consider C, and C,, and construct
the set containing all products of an element of C, by an element of C,. This way, we have
constructed the set C,C, that contains elements of G. Please note that we do not account for
element repetitions: in C,C,, each element is contained only once. If z and y are elements of
N, then a typical element of Cy, is xu, and a typical element of C,,C), is xuyv. This composition
operation satisfies the property

CyCy = Cyy. (2.41)

In fact,

CuCy

(Nu)(Nv) = (Nu)(Nu'uv) = (N) (uNuw)uw
(N)(Nuv) = (NN)(uv) = Nuv = Cyy, (2.42)

where we could use NN = N thanks to the rearrangement theorem. Equipped with this internal
operation, the set F forms a group. Furthermore, F is homomorphic to G. We call F the
"quotient" of G by IV, and write

F =GJ|N. (2.43)

The group F is also known as the "factor group" of G with respect to the invariant subgroup N.

We now introduce a new type of multiplication between two sets. First, let’s establish the
notation [S] to indicate that if there are repeated elements in the set S, we keep them. For
example, if [S] ={a, a, b, ¢, ¢, ¢}, then S ={a, b, c}.

We have seen that if C' is a conjugacy class of a group G and z € G, then 27'Cxz = C. Let [R]
be a set of elements of G composed solely of entire classes. By this, we mean that if an element
x € G is contained in [R] n times, then each of its conjugate elements will also be contained in
[R] an equal number of times. Then, for each u € G, we have

uR]u=[R]. (2.44)

Conversely, if [R] satisfies this relation for each u € G, then [R] is composed of entire classes.
This last implication is demonstrated as follows. Suppose that [R] is not composed of entire
classes. Let [R'] be the largest subset of [R] composed of entire classes. Since

w R u=[R], (2.45)
for each u € G, then it follows that the residual set
[R"] = [R]-[R] (2.46)

satisfies
uw R u=[R"]. (2.47)

We must now show that the set [R”] is empty. [R”] cannot contain e, since e alone constitutes
an entire class. Suppose that [R”] is not empty, and let  be an element of [R”]. Since
[R"] does not contain entire classes, there must be an element y in G, conjugate to = and not
contained in [R”]" but y = u™'zu for some u € G, and since u ! [R”]u = [R"], then y belongs to
[R"]. We have reached a contradiction. Therefore, we necessarily have

[R"] = 2. (2.48)

We can thus formulate the following theorem.
Theorem:: A necessary and sufficient condition for [R] to be composed solely of entire
classes of a group G is that for each u € G,

u I [R]u=[R]. (2.49)
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Let H be a finite group of order h, and Ci = {e}, Co,..., Cy,..., Cn, be its classes. We
indicate by n, the number of elements in class C}, and by N¢ the total number of classes. We
have, therefore,

Ng
Y ny=h. (2.50)
pn=1

Let X and Y be two subsets of H. We build the products zy of elements  from X and y
from Y, keeping the repeated elements. We define the set

XY =[xy], (2.51)
which contains all these elements. Let C, and C, be two classes of H. We take the product
C,-Cy =[], (2.52)
where u and v are respectivly elements of C,, and C,,. For all x € H we have
2'C, - Oy = [z uwz] = [z 7wz vz] = C, - Cy . (2.53)
Therefore C), - C,, is composed only of entire classes and we can write
N¢
C,-Cy= AZﬂnwcu, (2.54)

where n,,) are non-negative integers. The sum indicates the collection of classes where each
element C) is repeated n,,, ) times. The coefficients 1, satisfy the following symmetry property:

NpvX = Ny - (255)
This follows from
c,-C,=C,-Cy. (2.56)
In fact,
C,-Cy,=[uv] = [uwoutu] = C, - Cy, (2.57)
since uvu™! is a typical element of C,, and, when v traverses the elements of C,, uvu™! traverses

the same elements in a different order. Since C = {e}, then
Ci-C,=C, (2.58)

which implies
Nipx =M1 = 51/)\ . (259)
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Chapter 3

Theory of Representations

The purpose of this chapter is to formulate the theory of representations of discrete groups.

3.1 Representations

Consider a group H. Now, suppose we have a set G of linear transformations in a vector space,
and this set forms a group under the composition of transformations. Let’s also assume that the
group G is homomorphic to the group H. The group G of linear transformations is then called
a representation of the group H.

We can always express linear transformations in terms of square matrices defined with respect
to a basis for the vector space in question. In this case, the group operation for the group G is
simply matrix multiplication. Let H = {e, x, y,...} and G = {I'(e), I'(x), T'(y),...}. Since the
mapping ' is a homomorphism, we have

[(ay) = D(2)0(y). (3.1)

We call the dimension of a representation the dimension of the vector space in which the repre-
sentation is defined.
Here are some examples of representations:

(i) I'(x) = 1, the identity transformation, for all x € H. This representation is called the
identity representation or totally symmetric representation.

(ii) Consider the group O(3) of orthogonal transformations in three-dimensional space. This
group consists of all rotations and inversions (thus it is an infinite group). These trans-
formations are represented by 3 x 3 orthogonal matrices. These matrices form a represen-
tation of the group O(3). Another possible representation of the group O(3) is defined
in one-dimensional space. It associates with each element x of the group O(3) the linear
transformation that amounts to multiplying a one-dimensional vector by det(R,), where
R, is the 3 x 3 matrix related to the three-dimensional representation defined above. This
one-dimensional representation is often called the determinant representation.

(iii) Consider the 12x12 matrices defined by and ((1.11]), as well as in point (iii) of Exercise
Set 1. When an ammonia molecule undergoes a rotation in space, these matrices represent
the effect of such a rotation in the 12-dimensional space of displacement vectors of the
atoms composing the molecule. We have verified in Exercise Set 1 that these matrices
form a group that is homomorphic to the group Cs5,. These matrices are, therefore, a
representation of the group Cs, in a 12-dimensional space. We will see that, in general,
the first step in applying group theory to physics is to find the representation of the
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symmetry group in the vector space of system configurations. For vibrational modes of a
molecule, this is the space generated by displacement vectors. For a quantum system, on
the other hand, it will be the Hilbert space of the quantum states of the system.

Theorem. Let H = {e, x,y,...} be a group and I'(x) a representation of H. The set of
elements in H such that I'(x) = T'(e), where I'(e) is the identity for the representation I, forms
an invariant subgroup of H.

Proof: In the group theory review of the previous chapter, we saw that for a homomorphism
I, T'(e) is the identity, and T'(z™!) = T~!(z). The set of elements such that I'(z) = I'(e) is an
invariant subgroup because:

(i) It is a group. I'(z) =T'(e) and T'(y) =T'(e) = T'(zy) = ['(e); it has a neutral element I'(e)
and, if T'(z) = T'(e), then T'(z7! =T (z) = T'(e).

(ii) The group is invariant because if I'(z) = T'(e), then for every u € H, we have I'(u™l2u) =
D(u )T (e)T(u) = T(utu) = T'(e).

Definition. The representations I'(z) and I'V(x) of a group H = {e, x, y, ...} are said to be
equivalent if a non-singular transformation S exists, such that

I(z)=ST'(2)S, (3.2)

for each xz € H.

Theorem. Every representation I' of a finite-order group H is equivalent to a unitary
representation.

Proof: Let ¢ and ¢ be two arbitrary vectors in the vector space of transformations I'(x)
defined by the representation of H. Define

{Wlo} = 3 AT EWINE)), (33)

xeH

where ({|n) is the ordinary inner product between vectors £ and 7. It can be verified that the
operation {1|¢} is an inner product. Recall that an inner product must satisfy three properties:

(i) (&) = (nl€)* for every &, 7,
(i) (&lan + bv) = a(é|n) + b{&|v) for every &, n, v, with a, b complex,
(iii) (£[€) > 0 for every £ #0.

We can, therefore, build an orthonormal basis {¢;} according to the inner product (£|n). This
basis provides an orthonormal basis according to the inner product {v|¢} (for example, using
the Gram-Schmidt orthogonalization procedure). For each y € H, we have

{L(WYIT(y) o}

% S (T (@)D (YL (@) (y)6)
xeH
- LS Ty ) e)

h xeH

= {Y[¢}, (3.4)

where the last equality follows from the rearrangement theorem. This means that I'(y) (y € H)
is a unitary operator according to the inner product {¢|¢}. We can explicitly construct the
unitary transformation S that relates the representation I' to a unitary representation according
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to the ordinary inner product. Consider the initial basis {¢;} and the target basis defined by
¢; = Se;. If
£=) e (3.5)

and

n=) Biei, (3.6)

then

{S¢lSn} ;afﬁj{SeilSq}

= éafﬁj{éil%}

- S

- (e )
Therefore

(STT(2)Sy|S™'T(2)59)

{T(2)SYI0(x)Se}
{SY1S9} = (Y]g) . (3-8)

This proves that the representation
I'(z) =S T(2)S (3.9)

is unitary.

A representation I' of dimension [ can be regarded as a set of linear transformations in the
complex vector space C! formed by complex vectors with [ components. If {¢;} is an orthonormal
basis in C!, we can express a vector £ as

l
=Y aig;. (3.10)
i=1
The operators I'(x) applied to the basis vectors yield
l
T(z)pi =y, ¢;Tji(x), (3.11)
j=1
where I'j;(x) are the components of an [ x [ matrix. We can write the transformed vector as
l l l
5, = F(l‘)€ = Z ail“(:n)gi)i = Z qu Z ail—‘ji(l‘) . (3.12)
i=1 J=1 =1
The components of £’ = Y, al¢; are
l
o = > Tyj(z)a;. (3.13)
j=1
Let T, 7@ . T(™ be representations of a group. We can find a new representation by
constructing matrices of the form:
() 0o 0 .. 0
(2)
YO I (3.14)
0 0 0 ... TM(x)
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If the representations I'(® have dimensions [;, then the representation I’ has a dimension

=3 (3.15)

n
i=1
We symbolically denote the representation I' as

r-rWer@e.. orm, (3.16)

Some of the representations among ' may be identical. If, for example, the representation
') appears twice, we indicate it as 2I'(". Tt is clear that there is no limit to the number
of representations that can be constructed. The structure of representation is a block
structure, with the ¢-th block given by the matrix related to the representation I @) It is
crucial to note that for the representation I', the homomorphism with the group H only exists
if such a block structure is valid for each element x of the group. If we now perform a unitary
transformation

I'(z) = S'T(x)S, (3.17)

where S is a unitary matrix of size [ x [, the matrices I''(x) will generally no longer have a block
structure, while the representation I'/ is equivalent to the representation T'.

If, on the other hand, given a representation I', we can find a unitary transformation S such
that the matrices of the new representation I''(x) = S™'T'(z)S all have the same block structure,
we say that we have reduced the representation I' into a sum of representations. The possibility
of reducing a representation is at the heart of representation theory and its applications in
physics. We will now discuss this concept more rigorously.

Let {¢;} be an orthonormal basis in the vector space related to a representation I'. Consider
the vector £ = Zﬁzl a;¢; and study the effect of I'(x) on . Suppose we find that if a; = 0
for i > I3 + 1, then the application of T'(z) to & produces vectors for which such a property
remains valid, and this holds for all . We then say that the subspace generated by the vectors
¢1, ¢2,..., ¢, is invariant under the transformations I'(x).

Now, let’s imagine having a group H and a representation I'(xz) in an n-dimensional space
V5. Suppose there exists an invariant proper subspace M in V,, with dimension [ < n under all
transformations I'(z). Let {¢1, ¢2,...,¢;} be a basis for M. The invariance of M implies that

!
D(z)gi = > Tji(x)d;, i=1,2,...,1. (3.18)
j=1
We can construct a basis for the vector space V,, that contains the vectors ¢1, ¢2,..., ¢; as a
subset. Such a basis includes the vectors ¢1, ¢2,..., ¢; and the remaining n — [ basis vectors
¢l+1a ¢l+27 ceey ¢n We have
l n
F(-T)¢z = Z Fﬂ(l')(ﬁ] + Z Fﬂ(l‘)¢] s =1+ 1, I+ 2, A (319)
j=1 j=i+1

This shows that, in such a basis, the matrices of the representation have the form:

(P @
I'(z) —( 0T ) , (3.20)
Where P and T are square matrices with dimensions [ x! and (n—-1) x (n—1) respectively. If such

an invariant subspace M can be found, we say that the representation I' is reducible. In other
words, a representation I' defined in an n-dimensional vector space V,, is reducible if there exists
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a non-empty proper eigenspace of V,, that is invariant under all group transformations. If such
a subspace does not exist, the representation I' is called irreducible. A representation is called
completely reducible if, for every non-empty proper eigenspace M invariant under group transfor-
mations, the orthogonal complement N of M is also invariant. Clearly, a unitary representation
of a group that is reducible is automatically also completely reducible. Unitary transformations
['(x), by definition, preserve orthogonality. Since the subspaces with bases ¢1, ¢2,..., ¢; and
11, G142, - - -, On are orthogonal, they will remain so after applying the transformations I'(z).
In expression (3.20)), the block @ is identically zero. We have seen that for finite groups, each
representation is equivalent to a unitary representation. Therefore, for finite groups, there is
no need to distinguish between the concepts of reducibility and complete reducibility. So, from
now on, when we say reducible, we will imply a completely reducible representation.

Now, let’s develop criteria for establishing the irreducibility of a representation. These
criteria take the form of two Schur’s Lemmas.

Schur’s Lemma 1. A transformation that commutes with all the transformations of an
irreducible representation of a group is a constant transformation, i.e., a multiple of the identity.

Proof: Let H be the group, and x be one of its elements. Let I'(x) be the transformation
associated with x in the irreducible representation I'. Let M be a transformation in the domain
space of I'. We need to show that if

MT(z) =T(z)M (3.21)

for all x €H, then M is a multiple of the identity operator. If M = 0, the lemma is proved.
Suppose M # 0. Let S be the domain vector space of I'. If £ € S, the set { M} forms a vector
space, which we denote as M(S). In general, M(S) is a subspace of S. From equation (3.21]),
we deduce that

MT ()¢ = T(z)M¢ (3.22)

for each z. Therefore, I'(z) applied to M¢ results in an element of M(S). This means that
M(S) is invariant under I'. Since T' is irreducible, M (S) cannot be a proper subspace of S.
Moreover, since M # 0, M(.S) cannot be the set {0} containing only the zero vector. It follows
that M(S) = S. This result shows that the set of vectors £ for which M¢ = 0 contains only
the zero vector. Therefore, M is nonsingular. Let A, be an eigenvalue of M, and ¢, its
corresponding eigenvector. Define M’ = M — \,,1. The operator M’ satisfies condition
for each z, and if M’ # 0, then M'(S) is an invariant subspace of S under I'. However, M'(.S)
does not contain the vectors generated by ¢,,. That would imply that I' is reducible, which
contradicts the initial assumption. So, M’ =0, which implies

M = A1, (3.23)

proving the lemma.

Schur’s lemma 2. Consider a group H and two non-equivalent irreducible representations
'Y and F(z), defined in vector spaces S1 and Se of dimensions [1 and ls, respectively. Let M
be a linear map from S to S that satisfies the property

MY (2) =1 (2)M (3.24)

for each x € H. Then, M = 0.
Proof: Suppose M # 0. In general, the image of M applied to S; is a subspace M (S1) of
So. If £ €51, then
MTO ()¢ =T (z)M¢ (3.25)
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implies that M (S;) is an invariant subspace of Sy under I'®. Since T'® is irreducible and
M + 0, we have

M(S1) =5;. (3.26)

As the dimension of M(S7) is <y, we deduce that I < [y. Suppose for now that D and 13
are unitary. Let’s take the Hermitian conjugate of both sides of equation (3.24). We obtain

rM ()Mt = MTT®(2). (3.27)

By the same argument as before, we have MT(SQ) = 51, and [; < ly. But then, [; =[5, and
M is non-singular. This would imply that I} and I'® are equivalent, which contradicts our
initial assumption. We can remove the constraint on the unitarity of I'M and T'@. If these
representations are not unitary, we can show that TMf(z71) and T®f(z1) are irreducible
representations. In fact, for each I'(z), we can define

D(z) =TT(z71). (3.28)

The transformation thus defined is irreducible. DM (z) and D®(z) are defined in the dual
spaces of ) and I'® . They are representations since

T Hrf(y™)

= (T HrEy™")!

= (T 'a™)f

= (@)™

= D(zy). (3.29)

D(x)D(y)

Equation (3.24) gives us
DY (z) Mt = MDA () (3.30)

for each x € H, and the proof proceeds as before.
Corollary. A necessary and sufficient condition for an irreducible unitary representation I'
of a group H is that all transformations M such that, for each x € H,

MT(z) =T(2)M , (3.31)

are multiples of the identity.

Proof: As a consequence of the first Schur’s lemma, the condition is necessary. To prove
that it is also sufficient, we assume, for the sake of contradiction, that all linear transformations
M satisfying condition are multiples of the identity, but that I' is reducible. Let S be the
vector space of the definition of I', and let 51 be a non-empty proper invariant subspace under
['(z) for every x. Since I is reducible, we are certain that such a subspace exists. Furthermore,
as I is unitary, the orthogonal complement of S7, denoted as Ss, is also invariant. Now, consider
a linear operator M such that

M& =mi& (3.32)

and
Mé&s =ma&s, (3.33)

where &1 € 51, & € Sa, and my # mg. Clearly, M commutes with all I'(x), but it is not a multiple
of the identity. This leads to a contradiction to the initial assumption. It follows that I' must
be irreducible.
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Great orthogonality theorem. Let I'D) and I'® be two non-equivalent irreducible uni-
tary representations of a finite group H of order h. We have

(i) EHF(”*( 2P () =0, (3.34)
(i) 2}:{1“(1)* (1)(95)_ (3.35)

where 11 and I, are the dimensions of representations I'*) and T'(?), respectively.
Proof: (i) Consider an arbitrary matrix X with {; rows and /3 columns. Construct

M= TWEHXT® (). (3.36)
xeH

For each element y in H, we have

MT® () = > TO T O @) XTE (@)1 (y)
reH

I (y) 3> 1O ((ay) ) XTA (2y)
zeH

rM )M, (3.37)

where in the last equality, we used the theorem of rearrangement. According to Schur’s second
lemma, M =0, and this is valid for an arbitrary matrix X. By expanding the indices, we can
rewrite M =0 as

> T (@) Xl (2) = 0 (3.38)

zeH ik

By setting X;; = 0 for all ¢ and k except for a given pair ¢, k for which X;; = 1, we obtain (3.34]).
(ii) If representation I'® is identical to F(l), using a similar procedure as before, we can
conclude that the linear operation

M= TWEHXTO(2) (3.39)
reH

commutes with all T (y) (y € H). According to Schur’s first lemma, the matrix M is a multiple
of the identity
M =c(X)1, (3.40)

where ¢(X) is a number depending on the choice of X. Now, let’s derive ¢(X). For that, we
express M by expanding its indices. We have

> ST @)Xl (@) = e(X)d5. (3.41)
zeH ik

Now, let’s set | = j and sum over j,

S 3 X Zr(” PP (27! = lhe(X). (3.42)

zeH ik
Since T ()M (271) is the identity matrix, we obtain

o(X) = %T&«(X) . (3.43)
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Choose X as before, such that X;; = 1 for a given pair i, k and X;; = 0 for the others. We obtain
exactly relation (3.35). We can combine (i) and (ii) as follows:

> (l—l) " (x )( ) TN () = 0iOkmOin (3.44)

xeH h

> T @)TG) () = 6i0mdin, (3.45)
rzeH 7
where T and T'U) are two unitary irreducible representationsof H: 05 = 0 if '™ and TU) are
not equivalent while ¢;; = 1 if r@ =70

We can view equation as the expression of orthogonality for a set of orthonormal
vectors whose components are given by

(—") 1 (). (3.46)

Notice that the index of the components of this vector is the element x that runs through the
elements of the group H. These vectors are defined in a vector space of dimension h, denoted as
C". Since there cannot be more than h mutually orthogonal vectors in C”, the number of non-
equivalent irreducible representations is finite and cannot exceed h. Let Np be the number of
non-equivalent irreducible representations. If the i-th irreducible representation has dimension
l;, then the total number of these orthonormal vectors is

B+05+...+1%. <h. (3.47)

Next, we will demonstrate that in all cases, we have I? + 135 +... + ZZQVF = h (Burnside’s Theorem).
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3.2 Characters

Definition: Consider a representation I' of a group H. The trace of the matrices I'(xz) is
denoted as

x(@) = Tu(z). (3.48)

In a representation I, all elements that are in the same class have the same trace. Indeed,
let y be an element of the group H equivalent to the element x, meaning there exists an element
u € H such that

y=utzu. (3.49)

Then
I'(y) =T(utzu) = (v HI(2)(w), (3.50)

and

Tr[I(u )T (@)1 (u)]
Tr[T(2) (w)D(u™)]
Tr[T(z)] = x(x), (3.51)

where we used the property that the trace of a product of matrices is invariant under a
cyclic permutation of the matrices in the product. The set {x(z)} of traces for all z is called
the character of the representation I'. It is evident that two equivalent representations I" and T
have the same character since if

x(v)

I'(z) = S'T(x)S, (3.52)
then

X'(z) = Tr[I"(z)]
= Tr[S7'T(2)S]
= T[[(2)SS™] = x(z). (3.53)

From equation (3.45)), setting [ = k and n = m and summing over k and m (k=1, 2,...,1;),
(m=1,2,...,1;), we have

> X" (@)X () = ha. (3.54)
zeH

If we denote the classes of H by C,, (1 =1, 2,..., N¢) and the number of elements in C, by
ny, equation (3.54]) can be rewritten in the form

Ne . .
> X (C)XY(C) = hois (3.55)
p=1

In this equation, we have denoted by X(i)(cu) the trace of an element of the class C), in the
irreducible representation INON

The equation represents the little orthogonality theorem. It can be interpreted
as an orthogonality relation among the Nt vectors with components

(nu/R) XD (C) (3.56)

in a vector space of dimension N¢. Since there cannot be more than N linearly independent
vectors in such a space, we can establish the following inequality

Nr<Ng. (3.57)
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We will see later on that it is always equality that is satisfied.

Theorem. A necessary and sufficient condition for two irreducible representations of a finit
group to be equivalent, is that their character be the same.

Proof:

(i) We have already proven that the condition is necessary.

(ii) The condition is sufficient because if 1) (x) = x®) (z) for all z, but I'") is not equivalent
to I'® then by the grand orthogonality theorem (D we have

S @) =0
xeH

which represents a contradiction since at least the class containing the identity has a
character that is different from zero.

Thanks to the characters, we now have a tool to reduce an arbitrary representation of a finite
group H. Consider a representation I'. We can formally write its reduction into irreducible
representations as follows:

F=t6IPeblrPe.. . eby 0 b5,-012.... (3.58)
It is clear that for all x € H,
Nr ,
x(@) =3 bix(x), (3.59)
i=1
or
Nr .
X(Cu) =3 bix™(C) - (3.60)
i=1

Multiply both sides of equation 1) by nux(j )*(CH) and sum over y. Thanks to the little
orthogonality theorem ([3.55)), we obtain

138 Gy
bi = n ElnuX (Cu)x(Cp)- (3.61)
n=
Equation (3.61) is the fundamental formula for reducing an arbitrary representation into irre-
ducible representations.

From equation (3.61]), we obtain

N¢ ) No . ) Nr )
> X (C)P = S bib; > nux @ (C)X D (CL) = h Y02 (3.62)
p=1 i, p=1 i=1

This equation allows us to prove the following theorem.
Theorem. A necessary and sufficient condition for a representation I', with character x(C,,),

to be irreducible is that
N¢

z_:lnulx(cu)l2 =h. (3.63)

Proof: Indeed, if the representation I' is irreducible, then only one of the b; in equation
(3.62) is equal to 1, with all others being zero. The condition is therefore necessary. On the
other hand, if equation (3.63)) holds, then we can deduce from equation (3.62]) that

Nr
Soi=1 i=0,1,2,.... (3.64)
i=1
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This relation can only be satisfied in the case where one of the b; is equal to 1, with all others
being zero.

In the group theory review, we saw how to write a multiplication table for a finite group.
In particular, we constructed the multiplication table by placing the product zy in the cell
corresponding to the intersection of the row labeled with x and the column labeled with y. The
elements of the group appear in the same order in both the row and column labels. Alternatively,
we can use a different labeling scheme by designating the rows as x; = e, xo,..., x), and the
columns as 27! = e, 23, ..., x;'. It is clear that the sequence of inverses {z;'} contains all the
elements of the group in a different order. The multiplication table obtained using this labeling
scheme is as follows:

H rl=e x5! x5! . zy?
r1=e€ e xlmgl :legl ... xlmgl
) ) LE‘QCITil =e xgxgl ce :cgazf_bl
x3 €3 .1‘31’51 xgxgl =e ... 3%,
Th Th :L‘hx§1 xhxgl - a:hsvgl =e

We now construct a set of matrices {I'(z;)}, one for each element z; of the group, as follows:
the matrix I'(x;) is of dimensions h x h and consists of zeros everywhere except at positions
corresponding to the element x; in the multiplication table we have just written. The set of
matrices obtained in this way is a representation of the group H, as we will see later. It is called
the regular representation of the group and is denoted as T, We can summarize the definition
of this representation as follows:
. -1
i (x) = { (1) if wizy =2 (3.65)

otherwise.

We can immediately see that T (e) is the identity matrix of dimension h. Let’s now show
that I) is a representation. Indeed,

R R
[T (@)@ ()] = ST ()T (). (3.66)
k
For a given i and j, the term in k in this sum is nonzero if and only if

Tyt = (3.67)

and

:):kx]_-l =y. (3.68)

Each of these two conditions uniquely determines xzp. For both conditions to be satisfied
simultaneously, it is necessary to have z'z; = yx;, which means

ﬂ:ix;-l =xy. (3.69)

In this case, the sum on the right-hand side of equation (3.66|) contains a term for which
Fgf)(a:)Fl(gf)(y) =1, with all other terms in the sum being zero. If, on the other hand, condition

3.69) is not met, then the terms Fgf)(x)f‘]g?)(y) in the sum (3.66)) are identically zero. In
summary,

-1

. = my

J

otherwise. (3.70)

[T ()T ()], :{ (1) if 2,0
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But this is exactly the definition of the matrix T (zy). Therefore, we have

[T (@) T B ()] =T (ay) (3.71)

which proves that T is a representation of the group H.
Theorem. The regular representation of a finit group H contains each irreducible represen-
tation of the group, as many times as its dimension, this is to say:

r® - 1WeLr?e . o ZNFF(N” ) (3.72)

Proof: Let
r® - p W eprPe. .. @by I, (3.73)

The equation (3.61)) for the reduction of a representation using its characters gives us:

1Ky (R)
by = E Z nuX (CM)X (Cu)
p=1
1 .

Here, we have used the obvious property that all the (/) (C,,) are zero except for x(e) = h.

Using (3.60)), we have:

N
X(C) =Y ix(C) . (3.75)
=1

This relation is very useful in the particular case where C), = {e}. In this case, indeed, we
have x(V(e) = I; and:

Nr
SNiZ=h. (3.76)
=1

This proves that in the relation (3.47)), equality is always satisfied.
Theorem. Let I" be an irreducible representation. The sum of I'(x) matrices over all x
belonging to an equivalence class is a multiple of the identity matrix.

Proof: Let {x1, z2,..., x,} be the elements of a class of a group H. Consider the matrix:
n

M=3"T(x;). (3.77)
i=1

By the definition of a conjugacy class, we have:

n
D(y HMT(y) = 3. T(y  wiy) = M, (3.78)
i-1
where we have used the theorem of rearrangement of a class. So we have:

MT'(y) =T'(y)M (3.79)

for each y € H. By the first Schur’s lemma, M is a multiple of the identity. We notice that
this result is valid for infinite groups as well, as long as n remains finite.

For each irreducible representation T'(¥) and for each class Cy, of a finite group H, we can
construct the matrix:
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m

M = kzl r® () = m@1® (3.80)
where :L‘l(f) is an element of the class C, (k=1,2,...,n,), m;(f) is a number, and 1) is the

identity matrix acting on the l;-dimensional space of the representation I'¥. Sometimes, the

matrices M, ;(Li) are called "Dirac characters." Taking the trace of both sides of equation l)
we obtain:

nux(i)(C“) = limfj) : (3.81)

The product of two matrices M,Ei) and MV(Z')7 from the same representation but different
classes C, and C,, yields:

. . p ny
MOMD =3 51O @y (3.82)
k=11=1
The collection [w,g“ )xl(y)] (see group theory review, Chapter 2) contains all products of an
element from class C,, with an element from class C, (with repeated elements). In Chapter 2,
we denoted this collection as C), - C,,. Using formula ([2.54) derived in the previous chapter, we
can deduce:

. L Ne )
(2
MM = 5 nu MY, (3.83)
A=1
Here, the non-negative integers n,, indicate the number of times class C) appears in the
collection C), - C,,. We can now use equation ([3.80) to obtain.

N Ne N o
mff)ml(f)l(z) =3 nwxmg\l)l(z) . (3.84)
A=1

Equation (3.81)) allows us to write

A A Ng A
n,unuX(Z)(Cu)X(l)(Cu) =1; Z n;w)\n)\X(Z)(C)\) ) (3'85)
A=1
Where the coefficients 1, are the same as those defining the class product expansion ([2.54)).
This relation is the most important result of this chapter because it will allow us to derive the
characters of all the irreducible representations of a finite group.
We can also define the Dirac character of any representation I as:

Np
M, =T, (3.86)
k=1
where xl(f ) is an element of class C, (k=1,2,...,n,). Now, consider the transformation

S that reduces the representation I' into irreducible representations. The matrices I'(z) =
S7T'(x)S will have a block structure (3.14]), with each block being the matrix of an irreducible
representation I'¥) of the group. Let’s write the reduction of I' as follows:

r=r@er g,  grin (3.87)

where n is the total number of irreducible representations involved in the reduction of I'.
Note that the indices 7; can be equal. For example, if 7; = i = i3 = 1, it means that representation
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' is contained three times in the reduction of T'. Since the matrices M, . are sums of matrices
['(z), in the basis that reduces the representation I', the new matrices M, [L = $71M,S will also
have a block structure. Moreover, we have just shown that in each subspace related to an
irreducible representation, the corresponding block of the matrix M ,’L must be a multiple of the
identity. We thus obtain a matrix of the form:

m{ 1) 0 0 ... 0
(i2) 1 (i2)
M - 0 om0 0 , (3.88)
0 0 0 ... mim10n)

where m,,?’ are complex numbers, and 1() are identity matrices in each subspace corresponding
to an irreducible representation of the group. It is clear that the transformation M L =S, )
simultaneously diagonalizes the matrices M),.

This result will be very important for applications of representation theory in physics. For
instance, when studying the symmetry group of a quantum mechanical system, the Dirac char-
acters in the Hilbert space of the system’s wave functions are observables that can be simul-
taneously diagonalized with the Hamiltonian. Such operators represent physically conserved
quantities within each subspace that is invariant under the symmetry group’s operations. Rep-
resentation theory provides a tool for finding these observables based on the system’s symmetries.

Now, let’s prove another fundamental orthogonality theorem regarding the characters.

Orthogonality theorem by column. Vectors of dimension Nt (the number of irreducible

representation of a group H) given by

(nufh)2XD(Cy) 5 i=1,2,..., Ny, p=1,2,..., Ne, (3.89)

(45)
m

are orthonormal,

Neo . h
> (CX(C) = =6 (3.90)
i=1 L

where ¢, is the Kroeneker delta equal to 1 if the classes C,, and C), coincide, else is 0.

Before proving the theorem, let’s consider the collection C),-C,,. This set contains the neutral
element e if and only if there exists an element z in C,, such that ™! € C,,. If this is the case,
then for all other elements y in the class C), the inverse element y~! is contained in the class
Cy. In fact, for y € C,, there exists an element v € H such that y = utzu. Consequently,
y‘1 =utz7lu e C,. Tt follows that the collection Cy - Cy contains the neutral element e of the
group H if and only if the classes C, and C, are composed of mutually inverse elements. In this
case, the number of times the element e — and hence the class C = {e} —is contained in C,-C,
is m1 = ny, which is the number of elements in the class C,. We denote the class that contains
the inverses of the elements of class C, as Cs. The property that has just been proven can be
summarized by the notation:

Nyl = Ny (3.91)

Note that the classes C), and C/ contain the same number of elements, i.e., n, =n,. In
some cases, the classes ), and C) are actually the same class. We will see later, for example,
that this is the case for the class denoted by 8C3 in the tetrahedral group 7y. In contrast, the
same rotations occupy two different classes, 4C'5 and 4C§, in the group T, which, compared to
Ty, does not contain spatial inversion.

At this point, it is useful to emphasize another important property of the characters. Since
a representation of a finite group is always equivalent to a unitary representation, and the
characters of two equivalent representations are the same, we can write:
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(T (z™))
Tr(r 97 (z))
XD () (3.92)

X(i)(cu’)

We can also deduce that if C) = C), then the character for this class must be real, since we
have x(V(C,) = xV*(C,).

Proof of the orthogonality by column theorem. We are now able to prove the theorem
of column orthogonality. Consider equation and sum over all the irreducible representa-
tions of the group H. We have:

Nr . . Ng Nr ,
S XD (C XD (C) = 3 mpana > Lix ™ (Cy) (3.93)
-1 A=1 i=1

We have seen that:

Nr )
S 1D (Cy) (3.94)
=1

is nothing but the trace of the regular representation of an element of the class C). It follows
that this quantity is zero for all C)\ except for Cy = {e}, for which it equals:

Nr ] Nr
S 1 (C) = Y8 = (5.99
i=1 i=1
Thus:
Nr , ,
Znu’nl/X(z)(Cu’)X(l)(CV) = nyuh (3.96)
i=1

Using relations (3.91)) and (3.92)), and the property n,s = n,, we obtain equation (3.90)), and

the theorem is thus proved.
Since the set of vectors with Np components (nu/h)lﬂx(’)(CM) (¢=1,2,..., Nr) is orthonor-
mal, it must necessarily be:

Nr < Ng (3.97)

But the little theorem of orthogonality (which essentially states that the characters of irre-
ducible representations are orthonormal by rows) allowed us to establish the inequality in the
reverse direction (3.57). We have, therefore, demonstrated that:

Nr = Ng (3.98)

The properties of the characters that we have demonstrated allow us to construct, for each
finite group H, the character table in the following way.

H Cl = {6} CQ 03 PN CNF
Y 1 1 1 1
r® I XH (@) x®(Cs) .. XP(Cny)
e I XP(C) X)) .. X (Cny)
&) In: X(NF)(CQ) X(NF)(Cg) X(NF)(CNF)
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In this character table, each row contains the characters of an irreducible representation, and
each column represents a conjugacy class of the group. The first row contains the character of the
identity irreducible representation, for which T (z) = 1, and thus x")(z) = 1 for every element
x of H. The first column contains the character for the class C; = {e} for each irreducible
representation. We have seen that the representation I'(e) of the group’s neutral element is
always the identity in the representation’s defining space. The character is, therefore, equal
to the dimension of the space. For the irreducible representations I'¥, we have indicated the
dimensions of the defining spaces by ;. Since N¢o = Np, the character table is square.

The character table can generally be deduced from equation . This equation defines
an algebra of characters from the algebra of classes. To determine the characters, proceed as
follows:

(i) From the group H multiplication table, deduce the conjugacy classes C), (=1, 2,..., N¢).

(ii) Build all possible multiplications C}, - C,, of two classes (keeping repeated elements) and
determine the numbers n,, that appear in the expansion ([2.54)

N¢
CM . C,/ = Z TZ“V)\C)\ .
A=1

(iii) Omnce the n,, are determined, use equation to determine algebraic relations between
the characters X(i)(C’H) for each possible value of ;. For example, by setting [; = 1 in
and choosing all possible pairs u, v, we obtain a system of algebraic equations for
the characters of possible irreducible representations of dimension 1.

(iv) We know that such a procedure can be repeated a maximum of N¢ times, after which all
rows of the character table will be filled.

(v) In general, it is not necessary to repeat procedure (iii) for all irreducible representations.
At a certain point in the derivation, we can often deduce the remaining characters using
the orthogonality theorems (3.55)) and (3.90)), and relations (3.63)), (3.92), and Burnside’s

theorem (|3.76]).

Once the character table is obtained, we have the tools to reduce any arbitrary represen-
tation I' of a finite group to a direct sum of irreducible representations. Suppose we have a
representation I' expressed in the form of matrices I'(x) for each element x of the group. From
the matrices I'(x), we can immediately calculate their trace and hence the characters x(C,,) of
the representation I'. Then, using equation and the knowledge of the group’s character
table, we can calculate the coefficients b; in the reduction

T=b0TWeblPe... @by, (3.99)

The final step of the problem is to find the transformation S that reduces the representation
I" to a block structure. We will describe a systematic method for finding this transformation in
the chapter concerning applications in physics.
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Chapter 4

Applications in Physics

The purpose of this chapter is to demonstrate how the theory of representations applies to a
problem in physics.

We can often formulate a physical problem in the mathematical form of an eigenvalue problem
in a suitable vector space. As we saw in the first chapter, for example, the problem of classical
mechanics of the vibrational modes of a molecule can be reduced to an eigenvalue problem in
the vector space of displacements of the atoms that make up the molecule. The most important
example is the solution of a problem in quantum mechanics. In this case, we seek the eigenvectors
and eigenvalues of the Hamiltonian operator in a Hilbert space of functions. In all these cases,
the exact solution of the problem is often very difficult to find. It is useful to have a rigorous
method that allows us to simplify the problem. The method that arises from the symmetry
properties of the system and the representations of groups is a very powerful method in this
regard. We will see later that it allows us to predict the degeneracy of an energy eigenvalue and
restrict ourselves to subspaces of limited dimension in the search for eigenstates.

In the rest of this chapter, we will develop this method. For this, we will consider an example
of a problem in quantum mechanics. The extension to other types of problems, for example, in
classical mechanics, will be discussed in examples. We will also restrict ourselves to symmetry
operations of rotation or rotation-inversion, which form the group of rotation-inversion O(3).
This group will be described in detail in the following chapters. It should not be forgotten
that other symmetry operations in physics are possible. Namely, (i) translation operations,
(ii) permutation operations in the case of systems with multiple identical particles, (iii) time
reversal, and (iv) charge conjugation.

4.1 Symmetries in Quantum Mechanics

A system with N particles (without spin) in quantum mechanics is characterized by its wave
function ¢ (x1,x2,...,Xxy), where the x; are vectors in three-dimensional space R3. Consider a
transformation R from the three-dimensional rotation-inversion group O(3). The operator R is
a three-dimensional orthogonal matrix. If the system is transformed by an operation R, then
each position vector x; is transformed into a new vector as follows:

x; > X, = Rx; . (4.1)

We define a new function Prt(x],X5,...,x,) such that its value at position {x]} is equal to
the value of the old function at position {x;}, meaning:

PRIb(X,l?Xéu""fo) = 1/J(X1,X2,...,XN)
= (R'x), R '%),...,R'x)y). (4.2)
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Such a definition makes physical sense as it corresponds to performing a rotation of the system
in space. Since we do not consider particle permutation operations, the operations R act in-
dependently on each position x;. Without loss of generality, we can consider a single-particle
system. In this case, the definition becomes simply:

Prip(x) =y(R7'x). (4.3)

Subsequently, to simplify the notation, we will omit the prime in the expression x’ when it is
not necessary, and we will indicate x as the position after the transformation.

Now consider a finite group G = {R;} of orthogonal transformations. Associated with this
group, there is a group of operations {Pg,}. To prove that it is a group, we will apply two
successive transformations, R and S, from the group. The first operation transforms x into
x' = Rx, and the second transforms x’ into x”" = Sx’ = (SR)x. We have:

PsPry(x") = Pro(x')

= P(x)
= Y((SR)'X")
= PSRw(X”) 3 (44)
hence:
PgPr = Psp . (4.5)

Consider the inner product in the space of functions ¢ (x) defined as:

(Wlo) = [ dxv" (x)6(x) (4:6)

for each pair of complex functions 1(x) and ¢(x). We deduce that Pg is a unitary operator.
Indeed, we have

(Pri)|Pro)

[ ax(Prb )y (Pro)
_ /dx‘a(%wg) P (X)6(x)

(1), (4.7)

since the Jacobian
! ! !
a(xh Lo, $3)

8(1'1,1?2,173)

of the transformation is equal to 1 for an orthogonal transformation.
As an example, consider an operation Pg that corresponds to a rotation by an angle 6 around
the x3 axis. The coordinate transformation is

x| = z1 cos(f) — w9 sin(0)
xh = 21 8in(0) + 2o cos(6)
Th=13. (4.9)
We have
Priy(x1,z2,23) =¥ (x1 cos(f) + zosin(f), —x1 sin(0) + xo cos(0), z3) . (4.10)

However, please note that in this expression, the coordinates x1,x2,x3 are the coordinates of
the point after the transformation and should be denoted as z),z%, 25. Nevertheless, we have
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chosen to denote it as x, which represents an arbitrary position after the transformation. For
example, if 1 (z1, 22, 23) = 27 — 23, then

Pri(x1,22,23) = (21,22, 23) cos(20) + ¢p(x1, 22, x3) sin(26) , (4.11)
where
¢($1,x2,x3) = 2.%1.%2. (4.12)
On the other hand, if 1 (z1, 72, 73) = 23 + 23, then we obtain
Prip(z1,22,23) = ¢(21, 22, 73) - (4.13)

Now, let’s consider the Hamiltonian operator H(x). This operator, for a spinless particle,
generally depends on both the position x and the momentum, which, in the position representa-
tion, is given by p = —ihVx. It’s evident that the components of p follow the same transformation
law as x, subject to a transformation R. According to the definition, the operator Pr acts on
the function H(x)y(x) as

Pr(H(x)3(x)) = H(R™' %)y (R™'%). (4.14)

We say that the system is invariant under a transformation R if the Hamiltonian of the

transformed system is identically the same as for the system before the transformation. This
implies that H(R™'x) = H(x). The expression (4.14) gives us

Pr(H(x)¥(x)) = H(x)$(R'x)
= H(x)Pry(x), (4.15)
which, in compact notation, is written as
[H,Pr]l=HPr-PrH=0. (4.16)

We have thus proven that if a physical system is invariant under a transformation R, it is
equivalent to saying that the commutator of its Hamiltonian with the transformation operator
Pg is zero. We call R a symmetry of the system. Based on this definition, it’s evident that the
set {R} of all symmetry transformations of the system forms a group. In this case, it is referred
to as the symmetry group of the system. As we have seen, the set of operations Pg also forms
a group that is isomorphic to the group {R}.

Consider a system characterized by a Hamiltonian H and a symmetry group G = {R}.
Suppose that ¢ is an eigenstate of H with eigenvalue E. Then Pr¢ is also an eigenstate of H
with the same eigenvalue. Indeed,

HPr¢ = PrRH¢ = EPpé. (4.17)

If the eigenvalue E is non-degenerate, this implies that Pr¢ is equal to ¢, up to a complex
numerical factor (with absolute value 1). If, on the other hand, E is [-fold degenerate, then we
can define a set of orthonormal vectors {¢r} (k=1,2,...,1), which are eigenvectors of H with
eigenvalue F. These vectors generate a subspace S. In this case, the vector Pr¢y is still an
eigenstate with eigenvalue E and must be a linear combination of the vectors {¢y}, i.e.,

I
Proy = ), onlnr(R). (4.18)
n=1

The complex numbers I',;(R) = (¢n|Pr|¢r) are the elements of a unitary matrix (since the
operator Pp is unitary), denoted as I'(R). The set of matrices {I'(R)} for each R forms a
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unitary representation of the group G. If we choose another orthonormal basis {1} for the
subspace S of eigenstates of H with eigenvalue F, this basis is related to the old one by a
unitary transformation, and the representation it generates is equivalent to I'(R). Consider now
the subspace S of eigenstates of H with eigenvalue E. Suppose there are no proper subspaces of
S that are invariant under the operations { Pr}. In this case, the representation I'(R) related to
S is, by definition, irreducible. The degeneracy of the energy level E' is then called "necessary."
If, on the other hand, there exists a proper subspace of S that is invariant under the {Pg},
then the representation I'(R) is reducible, and the degeneracy is called "accidental." Such a
denomination is clearly justified by the considerations we have made. If a subspace is invariant
under the symmetry group {Pg}, then all vectors in that subspace must necessarily have the
same eigenvalue. Indeed, given a vector ¢ € S, the vectors { Pr¢} for all R generate the subspace
S and are all degenerate by . The symmetry group G, on the other hand, does not impose
any degeneracy between two eigenstates of H belonging to different invariant subspaces. In this
case, degeneracy would be of an accidental nature.

In general, in nature, we rarely have accidental degeneracies. If an accidental degeneracy
appears in the system under analysis, most of the time, it is due to a misidentification of the
symmetry group of the system. In such situations, additional symmetries are often found that
have gone unnoticed and can explain the observed degeneracies. A very well-known example is
that of the s and p states of an electron in the hydrogen atom. The 2p states have the form
~(1N2)(x + i) f(r), zf(r), (1/v/2)(x —iy)f(r), where f(r) is a function of r = |r|. They
generate a three-dimensional function space that defines an irreducible representation of the
spherical group O(3) (it’s an infinite group, so we can’t apply all the properties seen here).
Similarly, the 2s state has the form f(r) and generates the identity representation of the group
0(3). These two representations are irreducible and distinct. However, we know that the 2s
and 2p levels (in general, the ns, np, etc. levels) are degenerate. The degeneracy in this case
is accidental, given the symmetry group of rotation-inversion O(3). In reality, it is possible to
show that the hydrogen atom is characterized by an additional symmetry, and the symmetry
group is SO(4) instead of O(3). This hidden symmetry of the hydrogen atom is one of the most
interesting aspects of symmetries in physics and highlights the utility of the formalism we are
dealing with here.

Theorem. Consider two subspaces S; and S}, not necessarily distinct or orthogonal, defining
two unitary irreducible representations I'® and '), of dimensions ; and l;, respectively, of

a finite group G. Consider two sets of orthonormal vectors {qﬁ,(:)} (k=1,2,...,1;) and {@bl(j)}

(k=1,2,..., ;) that are bases for S; and S}, respectively. We say that the vector qb,(j) transforms
like the k-th basis function of the i-th irreducible representation. The following orthogonality
relation is satisfied

(03 1?) = @05 (4.19)

where a(?) is a complex number. ‘ '
Proof: Consider the /; x [; matrix defined by My, = <¢,§’)|¢§,§)). For each element R of the

symmetry group, we can establish the following relations
(0 ) = (Proy|Pre))

(0 T R) QT ()

FONR) e, [0 (R)
= O WO (), (4.20)

where the first equality follows from the unitarity of Pg, the second from the definition of the
representation, the third from the definition of the scalar product, and the fourth from the
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unitarity of the representation. For each element R of the group, we therefore have F(i)(R)M =
MrU )(R). By the two Schur’s lemmas, we have that, if ¢ # j, then M is identically zero, while,
if 4 = 7, then M is a multiple of the identity matrix.

This theorem tells us that, after classifying the states of a quantum system according to the
irreducible representations of the symmetry group, two states can only have a non-zero inner
product if they transform like the same basis function of the same irreducible representation.
This is very important for establishing selection rules in quantum mechanics, for example.

Another theorem that follows from the theory of representations is Unsdld’s theorem, which
allows us to construct quantities that are invariant under the symmetry operations of the system.

Theorem (Unsold’s Theorem). If {¢§f)} and {wﬁf)} (n=1,2,...,1;) are two orthonormal
bases of the same unitary irreducible representation I' of a group G, then for each operation
Pr of the group and for an arbitrary pair of vectors & and 7, we have

~

l; , .
PGERICRTR Z (E1PrD) (Pro ). (4.21)

We can interpret this result as follows. Consider the operator

li . .
>N e (4.22)
n=1
With this notation, we indicate the operator that, when applied to a vector &, gives us the vector
l; ) )
&= Y v oY) (4.23)
n=1

Unsold’s theorem states that an operator constructed in this way is invariant under all trans-
formations Pr, meaning

li .
Py (Z1 ) (o <’)|)PR Z ) (4.24)

where we used the unitarity property P]le = PIT%.
Proof: We have

) li
Prold) = Z o1 (R), (4.25)

and the same relation is also valid for the {1/;,(5')}. Then

;aPRw(’) WProPm) = SN T (R)TE) (R)

= 2SN I DTG (BT (R
= (SN m), (4.26)
p

where we used the property T (R)YT)(R™) =TO(RR™1) = 1.

Notice that for the proof, we didn’t use the orthogonality theorem. Unséld’s theorem is
therefore valid for infinite groups as well. This theorem plays a fundamental role in quantum
mechanics, allowing us to construct operators that are invariant under the symmetry operations
of the system under consideration.
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Let us now consider a vector ¢ in a vector space. By applying the operator Pr associated
with the transformations of the group G, we obtain a set of vectors { Pr¢}. In general, these
vectors are not linearly independent. They generate a subspace S of the vector space, in which
we can define an orthonormal basis {¢}. From this basis, we have seen how to construct the
representation I' of the group G related to this subspace. If the subspace S is the smallest
subspace invariant under the transformations Pg, then the representation I' is irreducible, and
the vectors {¢y}, by definition, transform like the basis functions of this representation. If the
subspace S can be further reduced into smaller invariant subspaces, we can perform the change
of basis that accomplishes such a reduction. For the representation I', we have the general
relation

F=00WenIMe.. . @by 0, (4.27)

We indicate the basis that reduces I" by {qb ’])} withi=1,...,Np,j=1,...,b;,and k=1,...,;,

to emphasize that the vector qﬁk 9 transforms like the k—th basis function of the i-th irreducible
representation. We can thus state the following theorem:
Theorem. A vector ¢ in a vector space closed under transformations Pr can be written as

a linear combination of vectors {1/},(5)}.

5330 (4.28)
1=1k=1

Here, by @ZJ , we indicate a vector that transforms like the k-th basis function of the i-th
irreducible representation of the group G.

Proof: We have already seen that the subspace, of which {¢,(;’J )} is a basis, is generated by
the vector ¢. Therefore, ¢ is a linear combination of these basis vectors.

Nr I

6=33 ZC i) (1) (4.29)

i=1k=17=1

Since the basis is orthonormal, the coefficients c,(C ) are obtained as follows

Nr lp b

@79 = X X S
p=1m=1n=1
Nr p
= 22 Z 51p5]n5kmc(p’n)
p=1m=1n=1
= D) (4.30)
. .
Let’s define ,
()2 5 9 0 (4.31)
j=1

and we finally obtain the expression .

So we can decompose any vector ¢ into the basis vectors of irreducible representations,
provided we know these basis vectors for the subspace generated by the vector ¢. Now, we will
learn how to determine these basis vectors. Suppose we have found one, denoted by w(l) By
applying the operations Pgr, we generate the irreducible representation I‘(Z), which means

P¢(Z) Zw(l)r(l) (R). (4.32)
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Multiply both sides of this expression by I' 7) (R) and sum over the elements R of the group.

n'k!
By the great orthogonality theorem, we have

S TY.(R) PRy

l; ) . ;
> e ST (R (R)
n=1 R

R
h .
- raij(skwfj,) : (4.33)
Therefore, the operator
L .
) - z %:rfj,g(R)PR (4.34)

applied to LZJ%) gives 5ij5km1/)7(f ). Tt follows that if we know the matrices of the irreducible
representations, then from just one of these basis vectors, say @/J,(j ), we can generate the others
using the formula

P =Pl (4.35)

The operators HSL]TZ, in particular, act as projectors on states that transform like the n-th basis
function of the j-th irreducible representation.

We now know how to accomplish the two main tasks involving basis vectors of irreducible
representations. First, suppose we need to find the decomposition of any vector ¢. This

decomposition is obtained simply using projectors Hg],? as follows

S &
¢ = Zz¢k )
i=1k=1
QR 1O (4.36)

More generally, suppose we have decomposed a representation I' defined in a vector space .S into
irreducible representations I' = ZZ].\:[ Do, T(W. We want to find the basis vectors {qb,(;’] )} for this

decomposition. To find, for example, the vectors ¢](:’j ) for a given k and ¢ and for j = 1,...,b;, it
will be sufficient to arbitrarily choose a vector ¢ € S (for example, from the vectors of any basis

of S) and apply the projector H,(jk) to this vector. This procedure must be repeated until a set
of b; linearly independent vectors is obtained. By applying an orthonormalization procedure,
we will have obtained the vectors ¢§;’j ) for 7 =1,...,b;. The vectors <Z>§f’] ) that transform like

the other basis functions of I'() can be obtained using the operators Hglz applied to the already
found vectors. We now know how to systematically find the basis vectors of a decomposition
into irreducible representations of a given representation.

To understand the utility of these recent developments, we recall that for a quantum sys-
tem characterized by a Hamiltonian H, the basis of the Hilbert space that diagonalizes the
Hamiltonian is a basis whose elements transform like the basis functions of the irreducible rep-
resentations of the symmetry group of the system. Suppose the vector space in which we want
to solve the Hamiltonian problem is of finite dimension. In quantum mechanics, this is generally
not the case, since the Hilbert space of square-integrable wave functions is of infinite dimension.
However, very often, to search for the eigenstates of the system, we restrict ourselves to sub-
spaces of finite dimension. Let V' be such a finite-dimensional space. For the formalism of group
representation theory to be applicable, the basic assumption is that all symmetry operations
of the system, Pg, are internal to the space V, which means that if ¢ € V, then Pr¢ € V for
every Pgr in the symmetry group. An example of such a finite-dimensional space is given by
polynomials of degree n in the variables x, y, and z and the rotation operations. A rotation
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is a linear transformation of the three variables z, y, and z, so the transformation applied to
a function 9 (x,y,2) = 2%y’27, with a + 8 + v = n, always results in a linear combination of
monomials of the same degree n. A space of functions defined in this way is obviously of finite
dimension.

In general, the space V' generates a representation I' of the symmetry group. This represen-
tation decomposes into irreducible representations as I' = blF(l) @ bgF(Q) D...0 bNFF(NF). We
have already seen how to calculate the coefficients b; using the characters. Let the basis (cur-
rently unknown) in which the Hamiltonian is diagonal be denoted by (ﬁ](;’] ), where i =1,..., Np,
j=1,...,b;, and k = 1,...,1;. We seek this basis, and without the help of symmetries, we
would have to diagonalize an eigenvalue problem of dimension }, b;/;, the dimension of space V.
The advantage of knowing how to classify states with respect to their symmetry properties, and
therefore to say that such a state transforms like the k-th basis function of the ¢-th irreducible
representation, allows us to significantly simplify the problem. Suppose we have a state w,({”)
that transforms like the n-th basis function of the m-th irreducible representation. In general,
we can express this state in the chosen basis. We have

) = S D) () (4.37)
5,k

where the coeflicients c,(:’j ) are obtained from the inner products

(59D = (g0 my. (4.38)

But we know from the theorem on the orthogonality of basis functions of irreducible represen-
tations, equation (4.19)), that in this expression, only the terms with k = n and i = m survive,
with all others being zero. Therefore, the previous expansion is reduced to

bm . .
%(Lm) _ Z Cglmd)¢7(1m7]) : (4.39)
j=1

In other words, any vector that transforms like a given basis function of an irreducible
representation is a linear combination exclusively of the basis vectors of the space with the same
symmetry. This leads to a very important property. If we have two arbitrary vectors, @bflm) and
%(Cj ), transforming as basis functions of the irreducible representations of the symmetry group
of the system, suppose k # n or j # m. The expansion and the fact that the Hamiltonian

is diagonal in the basis QS,(:’j ) ensure that

(WD HpM™) = 0. (4.40)

This is a selection rule for the matrix elements of the Hamiltonian and, in effect, it’s a par-
tial diagonalization of the problem. It tells us that the Hamiltonian problem is restricted to
each subspace of all states that transform like the same basis function of the same irreducible
representation.

Consider, for example, the k-th basis function of the i-th irreducible representation. We
can find a set of linearly independent vectors that generate this subspace, denoted as S ,gl), by
applying the projector (I;/h) ¥ r I‘,(;k) (R) Pg to all elements of the initial space V' (for example, to
vectors from any basis of that space). The Hamiltonian operator has no nonzero matrix elements
between vectors from S ,gz) and those in its orthogonal complement in V. We can diagonalize the
Hamiltonian H in this subspace, which has a dimension of b;. Therefore, we have reduced the
dimension of the problem from Y, b;l; to b; without loss of generality. Furthermore, since the
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degeneracy imposed by symmetry is necessary, the eigenvalues found in this subspace will be
the same as those in other subspaces S,gi) belonging to the same irreducible representation I'(*).

The reduction of the vector space of a Hamiltonian problem is the first of the simplifica-
tions introduced by the theory of group representations. Another significant simplification is
in the calculation of probability amplitudes, where we can systematically take advantage of the
selection rules imposed by symmetry. We will discuss this in detail in the following paragraph.

4.2 Direct Product of Representations

We will now introduce the concept of a direct product of representations, an essential tool for
constructing group representations and for applications in physics. Consider two vector spaces
Sy and Sy with elements, respectively, {&1, m, C1,...} and {&, n2, C2,...}. The direct product
S1 xSy consists of all pairs composed of a vector from S7 and a vector from Ss. Such pairs have
the form {1, n2}, which we simply denote as {172. This set is a vector space, provided we define
addition and scalar multiplication in such a way that we have

(a1&1 +bim ) (a2da + bana) = a1a281£2 + a1b2&1m2 + a2bini & + bibanins , (4.41)

for arbitrary complex numbers a1, as, b1, bs.
Suppose two linear transformations, A and B, respectively transform S; and Sz into S] and
5% as follows:

A: &G~ & =AG
B: & &= Bé. (4.42)

We can define the direct product A x B of the two transformations as an application from Sy xSy
to S] x S5 that acts as follows

AxB: &6~ 8 = (Ax B)(6182) = (A6)(B&). (4.43)

In most cases, we are interested in linear transformations from a space S to the same space
S. We will consider applications A from S; to S; and applications B from Sy to So. Let {¢;}
and {1;} be two orthonormal bases of vector spaces S and Sy, respectively. We can write the
transformations A and B in these bases as follows:

m
Bd}j = Z wanj .
n
The direct product A x B in the basis {¢;1;} of S1 x Sy takes the form
(Ax B)gityj = (Agi)(BY;) = ) dmtjAmiBn; - (4.44)
mn
It follows that the application A x B is characterized by a matrix representation
(A x B)mn;ij = Amian . (4.45)

In this expression, A x B is a l1ls x [1lo matrix, where [1 and Iy are the dimensions of S7 and So,
respectively. Note that the rows and columns of this matrix are now indicated by two indices
instead of one: in the notation (A x B)pp.ij, the terms mn and ij denote pairs of indices, not
products.
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The trace of the matrix A x B is

X(Ax B) =3 (Ax B)ijij = 3, Aii ) Bjj = x(A)x(B). (4.46)

So, the trace of a direct product of linear transformations is equal to the product of their traces.
If we have two transformations, A and A’, from S; to S1, and two other transformations, B and
B’, from S5 to So, then the direct product of transformations AA” and BB’ is simply written as

(AA"Y(BB') = (Ax B)(A'xB'). (4.47)

The proof is very straightforward:

[(AA")(BB") lmnsij = (AA")mi(BB )n;
l l
= Zpe1 Amp Ay £y Bng By

= qu(A X B)mn;pq(A, X B,)pq;ij (4.48)
Direct products allow us to construct new representations of a group from known represen-
tations. Consider a group H = {e, z, y,...} and two representations of this group, I' and I”,

defined in the subspaces S and S’, with bases {¢;} and {¢}}, respectively. The dimensions of
the subspaces are [ and I, respectively. We have

l

.
()¢ = ;%F%j(w)-

This allows us to define the direct product representation I' x I'' as follows:

l

ll
(T(2) xT'(@))(¢165) = 2. D dm&nLmi(2)Ty;(w)

m=1n=1

> Smn ((x) % I'(2) i - (4.49)

The direct product of the transformations I'(z) x I'(z) forms a representation of the group H
with a dimension of [ x{’. Indeed, the group’s composition law is satisfied by the matrices of the
product representation, as we can verify:

(T(z) xT'(2))(T(y) xT'(y)) = (T(@)I(y)) x (I'(2)I"(y))
=T (zy) x I (zy) . (4.50)
The character of this representation is given by the product of the characters, as in (4.46]):
X (@) = X" @)K (). (4.51)

In general, the representation obtained by the direct product of two irreducible representations
is reducible. Let’s take, for example, the representation I'g x I'g of Cj3,. Its character is

NOTE) = 4
XF3XF3(2C3) — 1
X' (30) = 0

Using equation (3.61]), we have
I'sxI's=T"1elyaly. (4.52)
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4.3 Selection Rules

We will now study the constraints imposed by symmetry on probability amplitudes in quantum
mechanics.

From time-dependent perturbation theory in quantum mechanics, we know that for a system
in a state [¢)) at time tg, the probability that it is in a state |¢) at time ¢ > ¢( is related to a
quantity called the "probability amplitude." This quantity is expressed as the "matrix element":

(VDY) (4.53)

where V(t) is the Hamiltonian operator of the physical perturbation inducing the transition
between the two states. For example, for a transition induced by an electromagnetic field
E(t) = Epexp(—iwt) with a long wavelength, this operator is the electric dipole operator: V (t) =
Y Foqiriexp(—iwt), where the sum is over all charged particles in the system, r; are their
positions, and ¢; are their charges. In general, for a complex system, one needs to calculate
these matrix elements for several pairs of states, and it turns out that, for symmetry reasons,
most of these quantities are zero. It is very useful to establish "selection rules" that tell us when
a probability amplitude is zero without having to calculate it explicitly.

Let’s consider the operator V that describes, for example, a perturbation on a quantum
system. This operator, in general, can be written as a sum of operators Vw(f) that transform like
the m-th basis function of the ¢-th irreducible representation of the system’s symmetry group.
For example, the dipole operator mentioned above has the symmetry of a position vector. For
a system with Cs, symmetry, we know that the z component of this vector transforms as the
identity representation, while the two components x and y transform as the two basis functions
of the irreducible representation I's. Suppose we want to calculate the matrix elements of these
components V,S) between states ¢§Lj) (n=1,2,...,1;) and w(k) (p=1,2,..., 1), which are
also classified according to the irreducible representations of the symmetry group. We want to

calculate the matrix elements:
(I 10g") (4.54)

We have seen that the vectors Vngi)h[);k)) generate the [; x[;-dimensional representation I'(*) x (%)
of the symmetry group. We can decompose this representation into irreducible representations:

) Nr
@ x1® = 5 p, 0@ (4.55)
p=1

where b, is the number of times the representation I'?) appears in the reduction. The theorem
tells us that the vector V(l)|w(k)) can be written as:

VO = ZZIf“’) : (4.56)

p=1g=1

where the vectors |§,§p )) are linear combinations of eigenstates of the Hamiltonian, as we saw in

equation (4.39):
(p) Z (w)|€(w)> (4.57)

Replacing this decomposition in the matrix element expression, we get:

OO - 33 2 Fo1E")- (4.58)

p=1g=1r=1
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We can now apply theorem (4.19)), which ensures that most of the dot products in this
expression are zero. Only dot products between vectors that transform like the same basis
function of the same irreducible representation are different from zero. Therefore, we obtain:

N 2N N
(P = 3 (0 165) (4.59)
r=1

Furthermore, the same theorem tells us that the number of independent constants of the form
(¢7(1])|§,(L]’T)) is equal to b;. It follows that to calculate the [; x I; x [, matrix elements of the form

<¢7(zj)|Vn(zi)|¢1(,k)), it is sufficient to calculate the quantities (¢£lj )|§7(zj’r)), the number of which is
only b;. This constitutes a significant simplification of the problem.

For example, consider the ground electronic state 1) of the ammonia molecule. We know
that this state is totally symmetric and thus belongs to the I'; representation of the symmetry
group C'5,. Now, consider a dipole-order induced transition by the electromagnetic field to
a higher energy state 1(®) that transforms like the T’y representation. The dipole operator
d = (dz, dy, d) is a three-dimensional vector, and its components are operators that transform
like the components of a vector in Cartesian space. For a system with C3, symmetry, such
a vector decomposes into the component d,, which belongs to the I'; representation, and the
two components (dz, dy), which transform like the basis functions of I'3. The matrix element
(¥pP|dJp(M) is therefore given by a constant (¢(2[¢()), where [¢(?)) is a vector that transforms
like 'y and appears in the decomposition of d|¢)(V)). However, we know that djyy())) belongs to
the representation (I'y @ I's) xI'y = T'y @ I's. No component of this vector will have symmetry
I'5, and the matrix element we seek is zero. Such a transition is said to be forbidden at the
dipole order. This selection rule has been derived solely by the application of group theory and
demonstrates the scope of this method.
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Chapter 5

The Orthogonal Group and Point
Groups

In this chapter, we will describe the properties of the group of rotations and rotation-inversions
in three dimensions. We will then derive the finite subgroups known as the crystallographic
point groups that represent the rotational symmetries of crystals and molecules.

5.1 The Orthogonal Group in Three Dimensions

The orthogonal group consists of all linear transformations of a vector in three dimensions
that preserve the norm of the vector. Before discussing this group in detail, let’s establish the
nomenclature that will be used later. Consider linear transformations of vectors of the form
&= (z1, x2,..., xy) € C", where x1, 2, ..., x, are complex numbers. A linear transformation A
takes the form:

£ ¢ = Ag, (5.1)

where the components of £ are:
1‘; = ZAij$j . (5.2)
J

So, A is represented by an nxn matrix A = (A4;;). The set of all non-singular n xn matrices (i.e.,
those for which inverses are defined) obviously forms a group called the general linear group in n
dimensions, denoted as GL(n). The special linear group SL(n) is the subgroup of GL(n) that
contains matrices with a determinant equal to 1.

The unitary group in n dimensions, denoted as U(n), is composed of all matrices U such
that:

(UglUg) = (¢l6) (5:3)

for each £ € C". By applying this definition to the vectors £ + n and £ + in, we can deduce that,
for arbitrary ¢ and 7, we have:

(UEIUn) = (&ln) (5-4)

and, therefore, UTU = I, the identity matrix. It follows that the determinant of U is a complex
number with a unit modulus, and:

ut=u-t. (5.5)

The special unitary group SU(n) is the subgroup of U(n) that contains all matrices with a
determinant equal to 1.
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The orthogonal group in n dimensions O(n) is defined like U(n), but it contains linear
transformations of real vectors in n dimensions in the space R™. Therefore, O(n) contains non-
singular matrices with real components. If R is an element of O(n), then the components of
&' = RE are:

J

In this case, the invariance of the vector’s norm implies:

2(33;)2 =Y > RijRpxjmp = . a7, (5.7)

gk i J
for each vector £ = (21, x2,..., x,). It is, therefore, necessary that:
RijRi = 0 (5.8)
or:
R'R=1. (5.9)

It follows that the determinant of R can only take the values +1 and:
R'=R'. (5.10)

A matrix that satisfies such a condition is called an orthogonal matrix. The special orthogonal
group SO(n) is the subgroup of O(n) composed of matrices with a determinant equal to 1.

We can now discuss the orthogonal group in three dimensions O(3). Consider three or-
thonormal vectors €1, €, and &3 in three-dimensional space. Orthogonality implies:

éi : éj = 5ij . (511)
The vectors are oriented according to the right-hand rule, that is:
él'(ég Xég) =1. (512)

An orthogonal transformation R € O(3) preserves the norm of all vectors and, therefore, the
angles between vectors. In fact, consider the vector x +y. Since its norm is conserved, we have:

IR(x+y)]>=|Rx + Ry =[x +y|*. (5.13)
This is true for arbitrary x and y, which necessarily implies:
(Rx)- (Ry)=x"y, (5.14)
leading to the preservation of the angle between the two vectors. Therefore, by defining:
& = Re;, (5.15)

We find that the three vectors &), &5, and &5, like the old &;, &;, and &3, are orthonormal.
We can express an arbitrary vector in the basis formed by the three vectors &1, &, and &s:

3
X = Z ;€. (5.16)
i=1
The transformed vector becomes: ,
x' = Rx =) x;&;. (5.17)
i=1
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The components of x” in the new basis &}, &), and &; are the same as those of x in the old basis.
We seek the components of the transformed vector x” with respect to the old basis. They are
given by the dot products of the vector with the three basis vectors:

3 3
a;; -x'. & = Z ;Ujéz‘ -é} = Z Rijxj , (5‘18)

which establishes the law of transformation of components. For the last equality, we used the
relation:

Ri; =88, (5.19)
which easily follows from the definition (5.15). The transformation law of the basis vectors is
also immediately derived from (/5.15)):

3
& => &Rj;. (5.20)

Let’s now calculate the product &] - (&5 x &5):
> Ri1RjsRi38; - (&5 x &)
ijk
= Y eijpRiRj2Ris
ijk
= det(R), (5.21)

& - (& x &)

where we introduced the Levi-Civita tensor €;;;, which is equal to 1 if (¢, 4, %) is an even per-
mutation of (1,2,3), -1 if the permutation is odd, and zero otherwise. We have shown that the
vectors &7, &), and &} are ordered according to the right-hand or left-hand rule, depending on
whether the determinant of R is 1 or —1. In particular, the inversion operator:

it x—>x =-x, (5.22)
represented by the matrix
-1 0 0
R; = 0o -1 01, (5.23)
0 0 -1

having a determinant equal to —1 transforms a right-handed oriented basis into a left-handed
one. Given a transformation R € O(3), two cases are possible: (i) det(R) = +1, and thus R is
also an element of SO(3). (ii) det(R) = —1, and therefore, R is given by an element of SO(3)
multiplied by R;.

Now, consider rotations about a fixed point. These rotations form a group. This group is
isomorphic to SO(3). To demonstrate this, we need to show that each rotation is represented
by an element of SO(3) and that for each orthogonal matrix in SO(3), there corresponds to a
rotation. A rotation of an angle ¢ around an axis parallel to the unit vector & passing through
the origin O transforms the vector x into the vector x’ given by:

x' =xcos¢+&(x-&)(1-cosg) + (&xx)sing. (5.24)

This expression can be easily deduced from a graphical representation like the one shown in
Figure This transformation is clearly linear and of the form ([5.18) with components:

Rij(¢) = 6ijcosdp+ejej(1—cos @) — . €jpepsing. (5.25)
2
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0,

Figure 5.1: Diagram of a rotation by an angle ¢ of a vector x.

The elements R;j(¢) form an orthogonal matrix since R;;(¢) = Rji(—¢), and thus, the inverse
matrix is equal to the transposed matrix. Its determinant is equal to 1. We can demonstrate
this as follows. For ¢ = 0, we clearly have det(R(0)) = 1. Moreover, det(R(¢)) is a continuous
function of the variable ¢. If there exists an angle for which det(R(¢)) = —1, then by continuity,
the function det(R(¢)) must take all values between 1 and —1. This is impossible since the
determinant of an orthogonal matrix can only take the two values +1.

We have yet to prove that all elements of SO(3) represent rotations. Let R € SO(3). We
first show that there exists at least one direction &s invariant under R, meaning

Rés=¢€3. (5.26)
To prove this, consider the eigenvalue problem
Rx = \x. (5.27)
The eigenvalues A are solutions to the secular equation
det(R-\I)=0. (5.28)

Since this is a third-degree equation with real coefficients in A, it has at least one real solution.
Let A3 be this solution, and &3 the corresponding eigenvector. Since R is an orthogonal matrix,
we have

(R&3)- (Ré) = Ajéz-83=1, (5.29)

implying A3 = +1. The product of the three solutions AjAsAs is the determinant of the matrix
and must be equal to 1. If A\; and Ay are real, then they must be equal to 1 or —1. Two cases
are possible: (i) A\; = A2 =1 and A3 = 1; (ii) A\ = —X\a = 1 and A3 = —1. In both cases, we have
found an eigenvalue equal to +1. If, on the other hand, A1 and Ao are complex, then we must
have A\g = A\] for the determinant to be real. In this latter case, the determinant condition gives
IA\1]?A3 = 1, implying A3 = +1. Therefore, the existence of the invariant direction &; is proved.
We now choose two unit vectors &€; and &s, orthogonal to each other and both orthogonal to &3,
oriented according to the right-hand rule. The three vectors Ré;, Ré,, and Ré; = &3 are also
oriented according to the right-hand rule, and the first two lie in the plane defined by &€; and
&2. Let ¢ be the angle between &; and Ré; (which is also the angle between & and Rés, due
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to the orthogonality of the matrix). The angles formed by &, and Ré, and by &; and Ré;, are
¢+ 7/2. It follows that

Rél = él COS ¢ + ég sin¢
Ré; = -&;sin¢g+&cosd. (5.30)

The matrix R thus represents a rotation by an angle ¢ around &s. This proves the isomorphism
between SO(3) and the group of proper rotations in three dimensions.

The elements of the matrix Ry, (¢) [Eq. (5.25] can be expressed in terms of three Hermitian
matrices.

0 0 O
Ji = 00 —i |,
0 ¢+ O
0 0 ¢
Jo = 0o 0 0],
- 0 0
-1 0
J3 = ) 0 (5.31)
0
These matrices obey the commutation laws
i, Im] = Jidm = Imdi
= iy emrlp. (5.32)
k
The element lm of the matrix
3
J-e=Y Jrey (5.33)
k=1
is given by
(J-8)im =—1 €lmk - (5.34)
k

Here we have formally defined a vector J = {Jy, Jo,J3}, where its components are the three
matrices defined in (5.31]). This definition allows us to write linear combinations of these matrices
in a compact form, such as the expression (5.33)). From (5.34]), we deduce that

(Jé)?m = - Z €inkCkEnmpCp
n.k,p

- Z €kin€kEmpn€p
n,k,p

= z(5kp51m - 5km(slp)ekep
k.,p
= O~ €lm ) (535)

where we have used the properties of the Ritchie tensor €, and

(J-e)?=J-¢. (5.36)
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These last two results allow us to write the matrix, whose elements are given by ((5.25)), in the
following form

I—il-esin(¢) - (I-8)*(1 -cos(¢))
exp(—i¢d - €), (5.37)

Rs(¢)

, where we have used the Taylor series expansion of the exponential function. This expression
in terms of an exponential function allows us to call the matrices Jy, Jo, J3 the generators of
rotations in three dimensions.

5.2 Subgroups of O(3)

Transformations of the orthogonal group are often denoted by special symbols. The two com-
monly used notations are Schonflies notation and international notation.
In Schénflies notation, the following symbols are used:

(i) Cy, indicates a rotation by an angle of 27/n. If the rotation axis is not clear from the
context, it should be specified. If not specified, it’s normally assumed to be the z-axis.

(ii) ¢ indicates inversion with respect to the origin: x —» x’ = -x.

(iii) o indicates a mirror reflection across a plane. Often, several types of mirrors are dis-
tinguished, depending on their relation to the other symmetry elements of the object of
interest. A mirror whose plane contains the axis of highest symmetry is called a "vertical"
mirror and is denoted by ¢,. A mirror whose plane is orthogonal to the axis of highest
symmetry is called a "horizontal" mirror and is denoted by oj. Finally, a mirror whose
plane contains the axis of highest symmetry and at the same time bisects two orthogonal
(5 axes to the axis of highest symmetry is called a "dihedral" mirror and is denoted by oy.

(iv) S, indicates an improper rotation by an angle of 27/n. It is a rotation of 27/n about an
axis &, followed by a mirror whose plane is orthogonal to €. So,

Sn = ahOn = CnO'h s (5.38)
since these two operations commute. It’s worth noting that ¢ = Ss.

In international notation (which we won’t use but is often found in the literature), the oper-
ation (), is simply indicated by the symbol n, ”andamirrorbym." A rotation-inversion operation
of the form iC,, in Schonflies notation is denoted as fi. So, i = 1. A system that has a principal
axis of symmetry & with symmetry C,, and orthogonal Cy axes to & is indicated as n2. The
combinations (Cy,0p,) and (Cyp,0,) are denoted as ;-"andnm," respectively.

We will now state the commutation rules between transformations belonging to O(3) and
the theorems of membership in conjugacy classes. These properties will be useful for the study
of irreducible representations of rotation groups and can be easily derived from (|5.37]).

Theorem. The only pairs R;, Ry of operations belonging to O(3) such that Ry Re = RoR;

are:
o Two rotations about the same axis.
e Two mirrors o with respect to orthogonal planes.

» Two rotations of 7 (180 degrees) about orthogonal axes.
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¢ One rotation and one mirror o with respect to the plane orthogonal to the axis of rotation.
o Inversion i and any element of O(3).

It should be noted that these rules are valid only for rotations applied to position functions x
as well as vector or tensor fields. We will see later that they do not apply to spinors, which are
vectors in the Hilbert space that describe the spin degree of freedom of a quantum system.

Theorem. Let G be a rotation group. Two rotations R(¢,é) and R(¢’,é") are in the same
conjugacy class if ¢ = ¢’ and there exists a rotation R(6,7) € G such that &' = R(-6,7)é.

Corollary. Let G be a rotation group. Two rotations R(¢,é) and R(—¢,¢é) are in the same
conjugacy class if there exists a rotation R(6,7) € G such that —é = R(-6,n)é.

Corollary. Let G = SO(3). All rotations R(¢,é), for a given ¢ and arbitrary é, are in the
same conjugacy class. Similarly, the rotations R(-¢,é) = R(¢,—¢é) are in the same class. We
can summarize this property by saying that all rotations with the same |§| belong to the same
class.

We may now describe the principal finite groups that intervene in solid and molecular physics.

Cyclic Groups C,. These are cyclic groups generated by a rotation of 2w/n about a given
axis. They have the form

{E, C,, C%,..., c™1}

where, of course, E = (]} is the identity operator. They are indicated by C),, which is the same
symbol used to denote a rotation operation of 27/n. So, one must be careful, but most of the
time, the distinction can be deduced from the context. In Schoenflies notation, these groups are
simply indicated by n (which creates even more confusion!).

Groups C,,. These are groups that contain the operations C,, and n vertical mirrors o,
with respect to vertical planes that contain the rotation axis. They have the form

2 n—1
{E, Cp, C5,..., C}7%, Ou1y.. .y Oun}

It is clear that the composition of a mirror o,; with a rotation Cfl results in another mirror o,y.
The group C}, frequently used in these notes as an example belongs to this category.

Groups C,j. These groups are generated by a rotation C, and a horizontal mirror o} with
respect to a plane orthogonal to the C), axis. Note that these groups contain not only operations
C’il and oj, since the composition of these two types of operations leads to improper rotations
Sm. For example, Sy = 05,Cy = Cooyp, = 4. This implies that for even n, inversion ¢ is contained in
Chh.

Improper Rotation Groups S,,. These groups are generated by an improper rotation .S,.
Again, one must distinguish between the group and the operation, both unfortunately indicated
by the same symbol. Since S, = 04,C,, = Cpop,, then S2 = C2, S" = E for even n, and S? = oy,
for odd n. So, one must be careful because, for odd n, the groups S, coincide with the groups
Cpp since they contain oy, = 5] and C), = 03,.5,. However, for even n, S,, is not the same group
as Cpp, but it contains the cyclic group C(,/2) as a subgroup.

Dihedral Groups D,,. These groups are generated by a principal rotation C,, about a given
axis and n rotations Cs about axes orthogonal to the principal axis of rotation C,. We can
better understand the nature of these groups by noting that they represent the groups of proper
symmetries (proper rotations) of regular polygons with n sides in three dimensions.
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Figure 5.2: Diagram of a tetrahedral.

Dihedral Groups with Dihedral Mirrors D,,y. These groups consist of the elements of D,,
plus n dihedral mirrors o4. Recall that a mirror is dihedral when the mirror plane bisects the
angle between two adjacent Co operations. The groups D,,4 are the symmetry groups (including
improper rotations) of regular polygons with 7 sides in three dimensions.

Dihedral Groups with Horizontal Mirrors D,,;,. These groups consist of the elements of
D,, plus a horizontal mirror o,

Cubic Groups. There are five so-called cubic groups. These groups are of fundamental impor-
tance in solid-state physics, as many crystalline solids have one of these groups as their point
symmetry group of rotations. Let’s start with the T' group. It represents the proper rotational
symmetry group of a tetrahedron about its geometric center. The tetrahedron is shown in Fig-
ure We can see that it is inscribed in a cube, which explains the name of this category of
groups.

We can imagine that the vertices of the tetrahedron represent four atoms constituting the
fundamental cell of a crystal (e.g., diamond). The six edges of the tetrahedron are the diagonals
of the faces of the cube. The rotations that leave the tetrahedron invariant include the identity F,
four rotations of 27/3 about the axes &, = 37V/2(2+§+2), &3 = 37 Y2(8—4-2), é3 = 372 (-2 +§-2),
and &, = 37/ 2(~2 -9 +2); the inverses of these four rotations, which also correspond to rotations
of 47 /3; and three rotations of 7 about the axes Z, ¢, and 2. Typically, this group is denoted as:

T ={E, 4C3, 4C%, 3C?},
where we have highlighted the class structure. The second cubic group is T},. It is generated
by the elements of T plus inversion i. Its structure is:
Ty, = {E, 4Cs, 4C3, 3Cy, i, 455", 45°, 304},

where Sy L=iCs, Sg = iC%, and oy, = iC5. Note that the tetrahedron is not invariant under all
operations of T},. On the other hand, the group Ty is the group of symmetries, both proper and
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improper, of the tetrahedron and describes the symmetry of many crystalline solids. It contains
the elements of T plus six dihedral mirror planes bisecting the (9, 2), (2,2), and (&, %) planes,
respectively, and six improper rotations S4 about the #, §j, and Z axes. These new operations
form the 604 and 654 classes. Since these new operations can change the sign of the é; axes,
(j =1,...,4), the operations C3 and C3 now belong to the same class, unlike in the group 7.
The class structure of the group T} is therefore:

T, = {E, 8Cs, 3C,, 604, 6S4}.

The group O is the group of proper rotations that leave a cube invariant. These operations
include the identity E, C'3 rotations about the é; axes, (j = 1,...,4), Co rotations about the , ¢,
and 2 axes, Cy rotations about the (2+9)/v/2, (2-9)/V2, (§+2)/V2, (§-2)/v2, (2+1)/\/2,and
(2-#)/\/2 axes, and Cy rotations about the Z, ¢, and 2 axes. The latter operations also generate
Cy = C%, but they are not in the same class. The class structure is:

O ={E, 8C3, 3Cs, 6C}, 6Cy}.

We conclude this list with the group Oy, generated by the elements of the group O plus
inversion i. It represents the complete group of symmetries (both proper and improper) of a
cube. Since ¢ commutes with all other operations, the class structure is duplicated compared to
the class structure of O:

Oy ={E, 8C5, 3Cy, 6CY, 6Cy,i, 85, 301, 604, 654} .

The irreducible representations and character tables for all these groups can be found in
most books on the applications of group theory in physics.

We conclude this chapter by stating a fundamental theorem in solid-state physics, known as
the "crystallographic restriction."

Theorem (Crystallographic Restriction). In a three-dimensional periodic crystalline
solid, the only possible proper point symmetry rotations are C,, with n =2,3,4, and 6.

This theorem is crucial because it limits the possible point symmetry operations to these
rotations, mirrors, and improper rotations generated by these two. We do not provide the proof
of this theorem here, but it arises from the three-dimensional periodicity of the crystal. An
important consequence of this theorem is that, for a crystalline solid, only 32 point groups are
possible. These are the 32 point groups. We list them in the following table.
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C, |n=1,2,3046
Con I n=1,2,34,6
Cro | n=2,3,4,6
Sh n=2,4,6
D, | n=23,46
Don | m=2,3,4,6
Dpa | n=2,3

Table 5.1: The 32 ponctual groups of symmetry for periodic crystals
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Chapter 6

Perturbation Theory

When it becomes impractical to calculate the eigenstates and eigenenergies of the Hamiltonian
governing a problem, it is customary to resort to approximation techniques. These techniques
differ depending on whether there is or isn’t a time dependence, whether there is or isn’t degen-
eracy in the eigenstates, as well as depending on the relevance of the sought-after approximation
and the available computational power...

6.1 Time-Independent Perturbation Theory

We consider a phys1ca1 problem governed by a Hamiltonian H, which we decompose as H =
Hy+ V where Hy is a Hamiltonian with known eigenenergies and eigenstates, and the additional
term V is treated as a perturbation of the system.

6.1.1 Non-degenerate Case:

Hereafter, we will denote |¢,,) as the basis of known eigenstates of ﬁo and €, as the associated
eigenenergies. The goal of this section is to establish techniques to determine the eigenenergies
of the total Hamiltonian H and to compare their variation with respect to the eigenenergies of
Hy. For sufficiently small perturbations, it is reasonable to assume that the eigenstates [tn) of
H will be "close" to |én), and the associated energies F,, will be close to €.

In fact, we are dealing with a more general problem here by introducing a parameter A € R
such that H = Hy + A\V. We are studying the limit of this problem as A tends to 0 (i.e., focusing
on very small variations). In the limit of very small A, the solution can certainly be expanded
in powers of A:

1) = 6n) + AH) + X% o) + - (6.1)
En=en+ AE} + M2 E2 + .., (6.2)

The Schrédinger equation is written as follows:

(Fo+ V) (Ion) + MDY + X2 [p ) + )
= (en + AEL + N2E2 4.2 (|¢n> A DY + A2 [P + )

62



CHAPTER 6. PERTURBATION THEORY Quantum Physics I1

Please note that if the radius of convergence of these series is greater than or equal to 1,
we will have a good approximation to the problem for A = 1, i.e., for our initial problem. We
choose the normalization of the basis |i;,) for any value of A by imposing (¢n|1,) = 1, which is
equivalent to imposing

(onl§) =0, (6.4)

for all j € N, including the fact that the states |¢,,) are not orthonormal.
The equation must be satisfied at each order in \:

1. At order 0, we have :
Ho |pn) = €n|on),

2. At order 1 :

HolV) + V |6n) = en D) + B [6n) (6.5)

which gives us, if we apply the scalar product with |¢y,) :

(n HolE DY + (00 V60) = € (0o D) +EWD (Bn]n) -

~— N~——
=0 =1 =0 =1

In other words :
(6n|VIon) = ESD. (6.6)
3. At order k>2:
Ho g+ VIt D) = e [0f) + B [ 1) + -+ BFD i) + B [g),

and once the scalar product with |¢,,) done, we obtain:
(k) = {¢alVID{D).

So, we know how to determine, at a fixed n, the energies ET(ll),---,Eflk), once we know
W?(zl)),---, |¢§Lk_1)). However, we still need to determine \w,(lk)) based on ]%(11)),---, |1/J»,(Lk_1)>. To
do this, we use the condition if we know the projection of |¢,(1k)) onto all ¢, for m # n, we

can access |¢§Lk)). To achieve this, we present two approaches here: the Rayleigh-Schrédinger
theory and the Brillouin-Wigner theory.

Rayleigh-Schrédinger theory:
We have :

(Dl HolbP) + (pm VI F1)
=€n <¢m|¢1(zk)> + Evg,l)(d’mWr(Lkil)) R Eék)((ﬁmwn)’

which gives :

€m<¢m‘¢7(1k))+ <¢m|‘7’w7(1k_1)>
= 0 (o[ + ES (@m0 D) + oo+ BED (@alpol)).
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Thus :

(Gmliir) = ({omlV ) = B8 @ml ) = o= EF D fm, [ (M)

€n —€m

We notice that |@Z)7(1k)) is entirely determined by the values of ET(ll), o Eflk_l) and the states
|@Z)7(ll)),---,|1/)7(lk_1) ). To illustrate, let’s consider the calculation at the 2°% order: we need to
determine E,(LD and @Z)T(Ll). The first-order approximation of FE,, is given by but we still need
to determine %(11)‘ We take the dot product of equation with |1y, ), and we get:

(| Holo§) + (0mlV60n) = €nldmlto D) + ES (Gmbn),

from which

mv n
(D) = {2mIT1n),

€n —€m

Thus,

W)n) = |¢n> +A |¢7(11)> + O()‘)

<o) ea ¥ Loy o),

2o
which gives us E,(f) :

E® = (¢n|VI())
(6nlVIbm) (Smlto))

(6n|V]dm) (bml1oS"),

M M

3
H

n

from where A )
g _ 3 [(6nl7160)

m#n €n ~—€m

Note 6.1.1. 1. If |¢y,) is the ground state, then e, — €, is always strictly negative (as we
assumed the states are non-degenerate). Thus, the energy of the ground state is always
lowered by the second-order correction.

2. The presence of a denominator in €, — ¢, immediately rules out the use of such a method
in the case of a degenerate level.

As previously mentioned, the states [¢,,) obtained in this way are not orthonormal. We use
0.2

o0

(nlton) =1+ 33 X)),
k=1
In other words, the norm always entails a higher-order correction in A. In particular, the first
term is of order 2 and is given by:
IIMONE
[P )]

5

<¢n|¢n> =1+ )‘2 E

mn (Gn - 6m)

Let’s focus on the conditions for the validity of such a method. As mentioned at the beginning
of this section, it is necessary for the radius of convergence of the energy series to be greater
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than or equal to 1. However, it is impossible to verify this condition since the series is not
explicitly determined. To address this issue, we impose that the coefficient of the A2 term is
small compared to the coefficient of A\. Let A be the energy difference between €, and the nearest
energy level; we have:

<Z5m|V|<Z>n|
‘E@)‘ ‘mz:t:n (en —€m) |
(6l V1n)|
Sn;n (fn_em)
1
% (z (G160} nlV160) - 5P
1

- 3 (S el on - @uit1ent’)

l>

The condition |E,(L2)| < |E7(11)| is satisfied as long as:

. AV |, A.
Tiony ~ (OnlV 100 <

A more restrictive but also easier-to-verify condition would be to require that the elements of
the perturbation matrix are small compared to the energy level spacing. In other words, we
impose:

’<< 1.
€n — €m

Ezxample 6.1.2. Potential of a Diatomic Molecule

The system’s Hamiltonian is given by H = Hy+V with:
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257

20

151

-2 -1 0 1 2
X

Figure 6.1: Correction to the potential

The energy and eigenstates of Hy for the system are already known, especially €, = (n + %)

The goal is to determine the Eék) for a fixed n. For example:
EW = (n)ci® + q@tln) .

We introduce the creation and annihilation operators in such a way that & = af +a. It is
immediately noticed that the term ¢i® does not contribute because only terms with the same
number of @ and &' operators give rise to non-zero coefficients. Furthermore, the graph
indicates that the coefficient ¢ must be negative, and:

it = (af +a)" = ((a")’ +ata+aal + a2)2
= (ah)* + (ah)%a® + (a")3a + (a")%aa’
a?(ah)? +a'a%a’a+ada’ +ata(ah)?
+a'ad +alaa’a +a'aaal + a(al)®
+aa'a? +aatala +aa'aal
= (a)? a2+ a2 (a)’ + afacal + aaala + afaala + aa'aal,
Where the last equality is obtained using the preceding note on the terms contributing in non
trivial ways Recall that
{ aln) =+/nln-1),

i [n)=vn-1ln+1),
which gives us
(n] (a+a)" n)
(n|(AT) a’[n) + (nla® (a ) In) + (nfa’aaa'|n) + (naata’aln) + (nla’aataln) + (nlaa‘aal|n)
= (VA)’ (Vi=1) (=2l -2) + (Va=1)" (Vi) (n - 2ln - 2)
+(Vn )2( n)2 (n+2[n+2) +2v/n - 2v/n - 1y/nVn + 1{nn) + (\/n—1)2(\/n+1)2(n|n)

(n +n—%)+(’)()
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Note that the energy correction is negative and that when n increases, the potential increases
as well, thus energy levels get closer when n increases

Brillouin-Wigner Theory:

The practical limitations of the previous method become very clear in the previous example
and in series exercises: except for very particular cases, calculations at orders higher than 2
quickly become much too complicated. The Brillouin-Wigner theory offers an alternative to
this technique by treating the components (¢,[1,), with m # n, as O(\). This choice seems
reasonable since the components (¢,,[1,) become arbitrarily small as A tends to 0. We start
with the Schrodinger equation for an eigenstate |1y, ):

(Ho+AV) [thn) = B [tn). (6.7)

Using we notice that such a state decomposes into the unperturbed basis:

[Wn) =1dn)+ 2 [dm) (Dmlton)-

m+n

We take the inner product of [6.7| with |¢p, ):

= (En — m)(dmltn) = A (¢m|‘7|wn> .

This provides an expression for |¢,,) in the unperturbed basis:

¢>mIV|7J}n>
R
|¢n +)\Tr;n|¢m € +A m#;ﬁnlﬁbm) E, —em En—ﬁj Ty

allowing us to obtain an expression for energy at an arbitrary order. In fact, all that is needed
is to project equation [6.7| onto the state [i);, ):

<¢n| (ﬁO + )“7) W)n) = En<¢n|¢n>
- (En - 6n) = )‘(d)n|f/|¢n> )

and to combine this expression with the representation of |¢,) in the non-degenerate basis:

En=én+ A <¢n|)\v|¢n) + N’ Z <¢n|‘7|¢m) B <¢mlv|¢n>
mEn n m
N 1 ~ 1 N
+XT 3 (0nlVIem) (bmlVIes) (651Von) +
m#n,j#n En ~—€Em En — €5
Note 6.1.3. 1. If we truncate the expression for E,, at a given order, the solution coincides

with that given by Rayleigh-Schrodinger theory. Examples are provided in the series.

2. At a given order, it is observed that the expression for energy contains all higher-order
terms, which provides a better approximation than the result obtained by Rayleigh-
Schrodinger theory.
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6.1.2 Degenerate Case:

As mentioned earlier, the Rayleigh-Schrédinger theory fails when Hp has a degenerate eigenvalue
€n, due to the presence of terms of the form en_l — in the expression for E,, for all m # n. To
solve this problem, let’s observe that the degenerate states associated with an energy ¢, form a
finite vector subspace of the Hilbert space. Suppose this subspace is generated by the eigenstates
|pn, ), for i€ {1,--,k} of Hy, which are chosen to be orthonormal. The problematic terms in the
(6, [VIdn)

€n;—€n;

V in the basis of states |én, ), the problem disappears.

expression for pr(Ll) are of the form with ¢ # j. In other words, if we can diagonalize

First-Order Calculation:

The eigenstates of the perturbed problem are a priori decomposed in the basis of unperturbed
states as follows:

J:l%»—’ M#EN ————"
00 o)

From now on, and for the rest of this section, we will use the notation |¢,,) to denote the
eigenstates of Hy that do not correspond to the eigenvalue €,,.

If we project the Schrodinger equation for the eigenstate i, of the perturbed problem onto
a degenerate unperturbed state (¢p,|, we find:

(En = en){dn;[tn) = A Z ¢nz‘v|¢m> <¢nJ [thn) + A Z ¢nL|V|¢m> (Smlthn), (6.8)

m#nj

which gives the following expression in the order in A :

(En =) {dnilton) = XD (60, Vidn, ) (dnslion) + O(N). (6.9)

Note that solving this system of k equations is, as introduced, equivalent to a matrix diagonal-
ization problem. Indeed, if we introduce u, the vector with components ({¢n,|tn)), and M @,

the (k x k) matrix with components M z.(jl) =\ <¢ni|f/|q§nj), problem can be rewritten as:
MBu= (B, -e,)u
Let Ef(lli) be the k eigenvalues of M) and u’ the associated eigenvectors. We have:

{ En,i =€pt+ E7(:1) ~ O(A)7
U; = (¢n3|wn,l> ~ O()7

where the |1y, ;), with i € {1,---, k}, form a basis of the subspace of degenerate states with energy
€n, such that V is diagonal in this basis, i.e. for all i, j € {1, k}:

(nilV[ibn ;) = Enidis.

Note 6.1.4. 1. If we explicitly write down the eigenvalue equation for the eigenvalue E,S Z), we
have, for [ € {1, k}:

k
Z ¢nz|V|¢n] (¢nj|¢n,i> = (En,i —€n) <¢nz|¢n,z>
It is clear that, in general, Efllz) # (fn |V |n,).
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2. In general, a perturbation allows us to lift degeneracy, i.e., obtain energy corrections Eflli)
that are all different. Any remaining degeneracies are actually due to intrinsic symmetries,
directly related to the physics of the problem.

3. Note that in the context of perturbation theory for a non-degenerate physical system, the
perturbation appears at order 1 in A, while here it appears already at order 0.

4. So, we started with a system described by a Hamiltonian H =Hy+V, where:

0 0
e O
0 €1

0 e
€n

€n

€n+1

A first order perturbation in A comes to diagonalizing the block I. But at order 2 and
higher, we can no longer neglect the contributions of A, B, C and D.

Higher-order Calculations:

Starting from the problem
(En = €n) (Pn;[tn) = A Z ¢m|vl¢n]> (@bnjhbn +A Z ¢nz|v|¢m) (Dmlthn),

m¢nJ

Also, consider the projection of the Schrodinger equation onto an eigenstate [i)y,) of Hy not
corresponding to the eigenenergy ¢,, we have:

ie. R
(Dm|V]thn)
E,-¢e,

with E, = ¢,+O(\). Furthermore, the orthonormality of the family {|t,,)}¥ | allows us to write:

k

Thus,
(SmlV |én,) (n, [10n)

€n —€m

(Pmlthn) = Z +O(N).

Injecting this expression into equatlon we get:

™M=

(En —€n) <¢n]wn> =A <¢m’V|¢ng> (éngwn) (6.10)

J

+A2Y S

j=1 m €n—

I
ol

¢nZ|V|¢>m> (Dl V16n,) (Dns [m). (6.11)
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As before, this leads us to an eigenvalue problem by introducing the matrix M®), which is a
(k x k) matrix with components:

1

Ml.(jQ) = XM, | Vo, ) + A2 (D0 VIdm) (dm|Vdn,) -

m €n ~ €m

If we denote ET(LQB as the k eigenvalues of M (2) and v* as the associated eigenvectors, we have
this time:

{ Epi=en+ ES) ~ OO,
vt = {dn,lthn,i) ~ O() + O(N),

where the [, ;), with ¢ € {1,---,k}, form a basis for the subspace of degenerate states with energy
€n, such that V is diagonal in this basis, i.e., for all 4, j € {1, k}:

(YnilVIvnj) = Enidij.

Note 6.1.5. 1. With this method, we must directly calculate the perturbation to the desired
order starting from order 0 (unlike non-degenerate perturbation theory, which is iterative).

2. In the case of one-dimensional problems, degeneracy never occurs if the potential diverges
at infinity. In particular, in this case, the ground state is non-degenerate.

Ezample 6.1.6. Two-Dimensional Square Potential Well: Consider a particle confined in a square
region of side length a. The potential is zero inside the "box" and infinite at the "walls." The
eigenenergies of the system are known and have the form ¢, = 3;222 (p? + ¢*) with p and ¢ e N*.
Note that the ground state, denoted as |1,1) and corresponding to p = 1 = ¢, is non-degenerate,

unlike the states |1,2) and |2,1), which both have an energy of 5227 The corresponding

2ma?
wavefunctions are given by:

2 Tr. . 27
d12(2.) = - cos(") sin( =

),

a
2 2rx . W
Go.1(x,y) = = cos(——=) sin(Z2).
a a a

To lift this degeneracy, we introduce a perturbation corresponding to a potential V(z,y) =
—k(2? —y?), where k is a positive constant. We aim to diagonalize the matrix:

- ((L2VIL2) (12V)2,1)
(2,1|V[1,2) (2,1]V[2,1) )"

Note that the diagonal terms are zero since the potential V is an odd function in z and y (hence
zero upon integration). We need to determine the off-diagonal terms:
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e - o oo (2o (52 () 2)

[ o ] Ay = ) (€03 (52) + cos (70)) (cos (79) ~ cos (1)

I\B\D
M\D

I\B\D
M\D

2 3

_ 14k j i (962 [Sin(vy) - Sin(ﬁy)] B [yQ sin(yy) | 2ysin(yy) 25111(73/)]

4a J gl B gl v gl
2
2 . . y=2
26's 1 2 2
E E 5 e
2
10,022 A
97?2
where we have used [ = f and v =2 for clarity.
Thus, the Hamiltonian H ( ) has eigenvalues
1 1
s 5(261\/4A)=§(2612A)=€:ﬁ:A,
in the subspace of degenerate states, and the associated eigenvectors are given by v, = A ¢ \ )
“A =),

As mentioned throughout this chapter, this method remains valid as long as the perturbation is
small enough that nearby energy levels do not 51gnlﬁcantly overlap. In othel WOI‘dS the results

established above are valid as long as |A| « 22, Le., as long as 1 ~ gz ka? < 5 . In other

2
words, it requires that k « Qh .
’ma

6.2 Time-Dependent Perturbation Theory

So far, we have focused on approximating the eigenstates and eigenvalues of systems described by
time-independent Hamiltonians. What happens when we can no longer neglect time dependence?
We want to solve the equation:

S 16(0)) = A (1) [9(). (6.12)

Note that this is a first-order differential equation. According to Picard’s theorem, if the system’s
state is known at a given time, then it is known at every moment. This allows us to introduce
a time evolution operator U(¢,tp) such that

[6(1)) = U (¢, t0) |6(to)) (6.13)

If the Hamiltonian is time-independent, it has the form

. H(t-tq)

U(t,to)=e "7, (6.14)

but when there is explicit time dependence, we cannot use such an expression. We need to
reconsider the reasoning that led us to establish the previous form of the Hamiltonian.
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The time evolution operator is obtained by solving the system:

{ ih§ U (t,t0) = H(OT (L, o), (6.15)

U(to,t0) = 1.

Integrate the equation from ¢y to ¢, and you get:

t “ t N N
in [ty 200t 10) = f dt1 A (8)0 (11, 1)
to 8t to

A~ t N A~
— z’h(U(t,tO)—]l):ft dt1 H(t1)U(t1,t0).
0

Therefore,

~ ) t ~ ~
U(t,to) =1 - % ft Aty (4)U (11, t0)
0

7 t . 1\2 t t1 N N N
=1 -— f dtlﬂ(tl) + (——) f dtl f dtQH(tl)H(tQ)U(tQ,t())
h Jto h to t

0

) i\" t t1 tn-1 ~ ~
=1+ (—%) ft dt; dty - ft dt, H(t1)--H ()
=1 0 0

to
Ezample 6.2.1. Integral on a triangle
We want to compute the term fté dty ft? dtoH (1) H (t2), in other words, we are looking for

the area of the "lined over" area, in the following figure:

ty

Which is strictly equivalent to finding the area of the "lined over" area of the following figure
(change of variable ty — t; and reciprocally) :

t1
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In other words
t t1 N N t t ~ A~
f dtlf dto F(8) I (t2) :f dtlf dto F(8) I (t2)
to to to t1
¢ t . .
. f dty f dts F () H (1),
to to

Where the last equality is found thanks to the change of variable used above. We thus have :

[tdtl ]t‘tl dtgﬁ(tl)f{(tg) :%A‘tdtl ﬁtdtzﬁ(tl)ﬁ(t2)+%£tdt1 [tdtgﬁ(tl)ﬁ(tg)
-3 [lan [ e (B0 AE)0-) + ROROO(-))
=%/t0tdt1 ft:dtﬁ(ﬁl(tl)ﬁl(tg)).

The operator T introduced in the last equality is called the t-ordered or time-ordered operator.

For n = 2: 3 ]
o . H(t1)H (t2) if tq > to,
I'(H H = A 2
( (1) (tz)) { H(t2)H(ty) if ta > #;.

In general, for any n € N:
T(ﬁ(tg(l))“'ﬁ[(ta(n))) = E[(tl)ﬁ(tn) iftg1 > > tn,

where o denotes a permutation of {1,---,n}. In other words, the operator T reorders the operators
H(t;) on which it acts into chronological order. This allows us to rewrite the time evolution
operator in the form:

N s 2\ 1 t t1 tn-1 ~ A N
Ot ) =1+ 3 (-—) e [Nt [T (B () B (1)) (6.16)
S\ R nl Jy to to
Note the presence of the corrective factor # due to the fact that the integral over each of the

n! possible combinations of the positions of ¢; remains the same because the operator 7' always
rearranges the ¢; in such a way that they return to their initial positions. It is customary to
condense the expression into the form:

Ot to) = T(e—%ft’é dtlff(tl)). (6.17)

Note 6.2.2. 1. If the Hamiltonian H is independent of time, then necessarily [H (t:), H(t; )] =
0 for all ¢;, ;. In other words, the operator T acts trivially on the product (H(ta(l)) H(t(,(n) ))
for any permutatlon o of n elements. In particular:

[e.e]

t1 tn-1 A A A
U(t,to) =1+ Z(——) f dt, f dty - f dt, T (H(t1)H(ty))
n' to to to
1 t1 tn-1 A A
=1+ Z(——) —f dty dty -+ f dtnH(t1) - H(t,),
=1 h to to to

n!

N it g A N
which, in exponential notation, gives U(t,ty) = ¢ * Jip AT (1), Moreover, since H is inde-
pendent of time, fté dt'H(t") = H(t-1p), and the time evolution operator can be rewritten

as U(t,to) =T (e_%H(t_tO)). Thus, we indeed recover the expression |6.14}
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. One needs to

[ it ~ Qi st A
2. In general, there is no guarantee that 7' e w o dtlH(tl)) = ¢ Jip L H (81)

go back to the uncompressed expression for U and explicitly compute each term of
the expansion before summing them. Unless a recurrence relation between all the terms
is found, which is highly unlikely, and in addition, a convergent series is obtained, such
calculations are practically infeasible. Therefore, we focus on situations where we can limit
the expansion to a few terms. In our case, it concerns problems described by a Hamiltonian
of the form:

H(t)=Hy+V(t)

where the perturbation is assumed to be small compared to Hy. Let’s look more closely at
what this implies for the different terms in the sum For example, for n = 2, we have:

ﬁ(tl)ﬁ(tg) = (.FIO + V)(f{[) + V) = Hg + Zﬁgv + V2.
The term of order V2 is thus generated by the terms of order V0 and V!. More generally,
each term of order V" in the expansion is determined by terms of order m < n in the
expansion of H(t;). To obtain a direct power series expansion in V(t), we must change
the representation; this is the focus of the next section.

6.2.1 Interaction Representation

In the preceding chapters, we have already developed the formalism of quantum mechanics
from the perspectives of Heisenberg and Schrédinger. In this section, we introduce a new
representation called the interaction representation.

Let’s begin with some reminders:

1. In the Schrodinger representation, it is the states |¢g(t)) that explicitly depend on time.
The evolution is governed by the following equation:

i 16s(0) = H(1)65(0).

In this representation, observables are fixed operators, and any time dependence they have,
if at all, is intrinsic and not governed by H

2. In the Heisenberg viewpoint, the time dependence is instead transferred to the operators.
The state vectors are assumed to be fixed, and their time dependence is intrinsic. The
system’s time evolution is governed by:

[6u (1)) = l¢s(to)),
On(t) = Uk(t,10)Os(1)Us (¢, to)
3. If we combine these two definitions, we recover ¢y (t)) = Ul(t,t9) |¢s(t)), which leads to:
(61 (D] On (D) |6n (1) = (6n(®)|U§(t,10)0s())Us(t,t0) |6n (1))
OL(t,t0)65 (1)| UL(2,10) 05 (1)U (1, 10) [UL (. t0)65(1))

(Ts (¢ t0) UL (1 10) 65 (1)] O (1) [Us (8 10) T (1 t0) b5 (1)
(ps(t)|Os(t) |ps(t)).

In other words, the expectations are the same, regardless of the adopted representation.
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The interaction representation is a kind of "blend" of these two points of view. We start with
a problem described by a Hamiltonian of the form:

H(t)=Ho+V(t),

where the time dependence due to the perturbation V is transferred to the states, while the
time dependence due to Hy is transferred to the observables. In other words, and noting that
Hy is independent of time, the temporal evolution of the system is governed by the following
equations:

i H(t-tqg)

~ CH(t-tg) A
Ol(t) _ eZH thto

(6.18)
or(t)) = ).

For the representation to be consistent, we must have |¢7(to)) = |ps(to)) = |¢r). We introduce
the interaction evolution operator Uj(t,tp), defined for each ¢ as:

lor(t)) = Ur(t, 1) |61 (t0))-
This, combined with the second equation in gives us an explicit expression for U 1(t,t0):

o)A

Us(t,to). (6.19)

Ur(t,to) = €
We still need to determine how such an operator evolves. We have:

gtUI(tto)—e ”O)ZI;OUS(tto)JFG S s t0) (4 )H(t)Usuto)

QM(;)( (t) - Ho) Us (t,to)

5 h)m ) Ot t0)

(52)e ™5 (70 e 55 B 1,10
_ (%) (Vi (1)) Us(t, to).

From this, we derive the differential equation:

z’h%f]](t,tg) = (Vi(t)) Ur(t, to). (6.20)

We find an equation identical to the one governing the evolution of the operator ﬁg(t,tg)
in the Schrédinger representation. However, this time, it’s the perturbation Vi, expressed from
the interaction representation’s point of view, that plays the role of H. If we push the analogy
a bit further, we can use similar reasoning to obtain an expansion of Uy (t,to):

Ur(t,to) =1+ Z(——) [ dty dtg ft:"_l dtn (Vi(t1)Vi(ta-1))

to

> 7 n 1 tn-1 A A A
“1+ (——) f ity [ty - f dt, T (Vi (1) Vi (- 1)) |
1 to to

S\ h n!
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Which we can put in a more condensed version:

Ur(t,to) =T (6% Jro dt’Vz(t’)) .

. Hy(t—tg) A

Using [6.19, we deduce that Us(t,to) =e '~k U(t,ty), which gives us the desired expansion
of Ug(t,to) in powers of V(t). As mentioned earlier, such an expansion is only meaningful if it is
possible to truncate the sum from a certain term onwards. This is feasible when V(t) is a small
perturbation. It should be noted that perturbations have always been assumed to be finite in
the reasoning conducted so far. We will discuss this assumption in the following paragraph.

6.2.2 Transition Probabilities
Consider a system described by a Hamiltonian of the form
H(t) = Ho+V (1),

0if t <ty
V(t) if t > to.
Hamiltonian. Suppose the system is in the initial state |i) at ¢t = g, so its temporal evolution is
determined by:

where V = and let |n), E,, be the states and eigenvalues of the unperturbed

[ee]

[0s(t)) = Us(t,to) i) = D ca(t) ),

n=0

where 37 |c;|* = 1. Since the states |n) are orthonormal, projecting the state |¢5) onto the state
|n) determines the coefficient ¢,,, and this holds for any n € N:

cn(t) = (nlos(t)) = (n|Us(t,to)|i)

(nfe~ #2000 i)

. En(t-tg)

e TR (n|Ur(t,to)i) .

This allows us to access the transition probability P;_,, from the initial state |i) to any eigenstate
|n) of Hy:
2 2 2 T
Pion = [(nlos (D) = lea ()] = [(n[U1 (2, t0)13)]

Note that by assumption V(¢) = 0 for all ¢ < tg, so |i) is not only an eigenstate of Hy but also
of H. Let’s determine the expression of the transition probability at the first order in V. Note
that in the first order:

Ut ) =1 — — f tdt Vy(t1),
h to

thus :
~ . i [t ~ .
it o) 1) = =5 [ dts (Vi (ko))
- J, "ty {nle TGP (1, 1) e NG00y
) 3 i N
= [ R EE ) ) 10)])
h Jo
and finally
it ; R 2
Pm:‘—% fo dtye”n En=EDG=t0) (7 (41 10)|i)| (6.21)
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6.2.3 Particular cases :

1. Let us apply what precedes to the special case, when the potential does not depend on

time. We get
> O sit < tO
e { V sit > to,
and [6.21] becomes:
Pin(t) = i ‘<n|‘7|l) ]—tdtle‘%(En—Ei)(tl—to) 2
—>n h/2 0
‘ 2
1| o e wn(En-E)(t-to) _q
=5 |7 (nlVl]i) ’
h* i Ey. - E;
' 2
o 2|1 = e m(En-Ei)(t-to)
RO e
a2 4 o (Bn—E)(t-to)
=V gy n ( 2 |
With no loss of generality take ¢o = 0 and re-writting the preceding expression P (t) in
the form
Ly, a2 o Bn—Ei
Pioan(t) = 35 [(n V1) f( - ) 6.22)

: _ 4 t _ BEn-F; : _ 42
with f(w) = ﬁsm(%) et w === Note that 11_r>%f(w) =t~ and

0forw=2k7”, keZ”

f(w) =

4 :cwt _m
2 it 5 =5 4k,

B3 27 .m0 T 27 3w

Figure 6.2: f(w)

At a fixed time ¢, the most favored transitions satisfy w < 27” With what precision

can we determine the energy difference between an initial state and a final state after
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a perturbation has been applied to the system for a time At? Transitions can occur to
energy states E, — E; < 2121 In other words, the measurement precision is at best of the

order of AE ~ % This leads to:

AEAt > 2rh, (6.23)

which recalls the uncertainty relation AxzAp > g Note that this is a purely mathematical
resemblance, as energy and time are not observables.

For any value of w, it is necessarily the case that f(w) < ﬁ. Furthermore, note that

1i sin?(w)At
Indeed:

= d(w) where ¢ is the Dirac delta function.

tlilg% o —sm (wt)p(w)dw = hm 1~ f —smz(aj)qﬁ(x)d—x
=tliI£10 . ;sinZ(x)qﬁ(?)da:
+00 gin?
- $(0) [ ) Sme(x)dx
=71 (0).

Thus replacing w by E, — E; and t by % we obtain the Fermi golden rule :

Pion(t) = —At\ (n|V]) \ §(En - E). (6.24)
It is sometimes more usefult to work with a transition probability per unit time : w;_,(t) =
ap’g—tn(t), in our example

2
Wi (t) = ;T (n|V]i) ‘ (B, - E;).

. C 1. ~ 0ift <ty
2. if now the potential is given by V' = V(t)et + Themit if ¢ > ¢,

Equation [6.21] is now given by :

[t - ¢ . , ) , 2
P, = ‘—%[) dtlel(En—Ei)% (<n|V|Z> et 4 (n|VT|2) e—zwtl)

E; 2

T e L 1 ()

o1
B Lt VR

(nV1}i)

At long times, transitions to energy states with E,, = I; + hw are favored, and we find:

win(t) = 28 (Vi) (5 - +hw)+—| (Vi) [ 6B — B+ huv).

Notice that the first term in the sum corresponds to an energy loss by the system, while
the second term represents an energy gain by the system due to the perturbation. We can
observe that the harmonic part induces transitions with AF = +hw. More precisely, the
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~iwt i the positive-energy part that allows transitions to final states with E,, > E;,

is the negative-energy term, allowing transitions to states with E, < E;.

term < e
while ett

This Fermi’s golden rule is very important, as it explains how optical transitions occur in
the presence of an oscillating external electromagnetic field, for instance, between levels of
an atom or a solid.

3. Let’s now consider the second-order effects. We will use a slightly different method to
obtain the Dirac delta of the golden rule.
i
-—Ent . )
cn(t)=e b (n|Ur(t,t0)li)
where we have omitted the constant phase e*Zn%/? Instead of turning on the perturbation
at time tg, we will assume that it turns on very slowly from ¢ = —oo.

4. Case of a nearly constant perturbation
V(t) = Vet € >0 real

The idea is to take the limit ¢ — 0 at the end of the calculation to describe a constant
perturbation. Let’s write the perturbative expansion of U 1(t,—00). For the sake of cal-
culation simplicity, which will become clear later, we will use the first form, the one used
before the introduction of the time-ordered operator:

t t t1
~ ~ 1 ~ 1 ~ ~
U[(t,—oo)=I—Efdtlvf(tl)—ﬁfdtlfdtgvj(tl)vj(tg)+---
from which

t t t1
; ' v TP
ey () =~ [ dt Vi) —55 [ dtr [ de2 alVi(0)l) (ol Vi (e2)l)

Il 12
Let’s start with the first integral. Recall that
V[(t) _ eiﬁot/hV(t)e—iﬁoth

- elHot/hVeEte—ZHoth

Using the property of the eigenstate:

t t
n= [t Vi) = (ol7) [ dige (O EDictsn

i (%((En C Bt - ietl)) t

%(En—Ei—ie

If we were to stop at the first order, we would find the golden rule as follows:
e2et/h

P =len®F = [ lVI) P
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But
lim —2% = 276(z), here a = <
lim ——— = 270(x), here a = 7
. sz—>n _ rasre 2
lim —= = [{n[V]i} |
25t/h26/h
= lim
e—0 (E - F; )2 + €2
27r E, E
- 1n Vi) P8 (=)

= 2 (nl?7) 125<En - B) =wim O

We have retrieved the previous result. Now let’s calculate Is:
t t1
L= [t [ dts 3 alVi(tn)lm) (ml Vi (t2)li)
—00 —o0 m

where we have introduced I as ¥, |m)(m|

I =3 (nlV|m) (m|Vli) / it f dtgexp( (Ep— By, —ze)tl)exp(;(Em—Ei—ie)tg)
L )

exp (%(Em - Ei - ie)tg)

=S V) (ml V1) [ dtyexp (L (B, - By - ie)t .
% l 1 p(h 1) (B~ By - i€)

— 00

exp (%(Em -FE; - ie)tl)

(n|V]m) (m|V|i) /dthp( (En—Enm —ze)tl)

SM

%(Em B —ie)

(n[Vm) (m|V7]i) exp (%(En o 2ie)t)
(Em - EZ - iE)(En - El - 226)

=-h*3"

m

The term exp (%(En -E; - 2ie)t) [(E, — E; — 2ie) is the same as in I; (except for e — 2¢,

which doesn’t change anything in the limit € — 0). If we start from

t t t1
7 ~ 1 N 1 N ~
exp(EEnt)cn(t):I—EfdthI(tl)—ﬁ[dtlfdthI(tl)VI(tz)

and replace the two previous results, we have

t t t1 2
. ) 1 -
Pin = | (D)2 = f dtVi(t) + = f dty f Vi (t)Vr(t2)
A A 2
. (n[Vm) (m|V]i) e2et/h
= |(n|v
{nl ]z)+; En - E;—ie (B - E;)? + €2
and
A 2
dPi_, 27 (n|V|m) (m|V]i)
g TW Ty (”W'Z“; B —i0+ | 00 B0
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which is the second-order transition rate for a time-independent perturbation V. Note
the sum over intermediate states |m) typical of second-order perturbation. Here, a very
suggestive image is that the system undergoes "virtual" transitions to states |m) without
conserving energy since they occur in an arbitrarily short time before going to state |n).

The term 1/(2z+40") has a well-defined meaning, which is non-trivial when the states form
an uncountable continuous spectrum. Here, we just need to be careful with the term m = 1.
This term has a singularity. It is simply due to the assumption that V = cste until ¢ = —oo.
Indeed, in the integral, we would have a contribution:

t
lirrol / dtoexp (eta/h) =t —tg = |cn(t)] o< (t —19)? = Wimn o< t —tg
€—
to

In the case of a real active perturbation from ¢g to ¢, we can assume ty — —oo but keep tg
finite only in the case m =1i. Alternatively, we can project V onto |i) in Hy:

Hy— Hy+ BV P, By = i) (il
VB
Thus, for the new V', (i|V]i) = 0, and we no longer have the singularity problem.

In the case of a harmonic perturbation, we can follow the same path. For simplicity, let’s
assume we have only the term with positive energy:

V(t) _ Vefiwteet/h
Thus, we will have:

exp (%((En -E;-hw)t- iet))
E,-FE;-hw-te

2 ~
Winm = % (n|V]i)

2

7 .
5 {nlVlm) V) P (580 - B2 -2 i)
E,, - E; - hw—ie E, - E; - 2hw — 2ie

m

This time, the two Dirac deltas have different arguments due to the factor of 2w. The
limit as € - 0 is not simple in general. Let’s assume the case where the perturbation is
zero at the first order:

3y (n|V|m) (m|V']i)
E,, - E; — hw —10*

m

2

h

Wisn =

§(E, - E; - 2hw)

Once again, this form suggests a physical problem: each virtual transition "absorbs' a
quantum of energy hw. Therefore, the real transition will occur between states separated
by an energy of 2hw due to the second-order perturbation.

6.2.4 Continuous Spectrum

Simple considerations allow us to generalize these results to the case with a continuous spectrum.

discrete case continuous case

[05(8)) = S ea(t) n) 6s(0) = [ dEcp(®)|E)
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Here, the eigenstates of Hy. |E) are normalized such that (E|E’) = §(E — E'). Therefore, the
state |E) is no longer dimensionless. Its dimensions are [|E)] = [1/VE].

If we assume |¢ps(t)) is normalized to 1, we see from the previous relation that [cg(t)] =
[1/V/E]. In our perturbative expressions, |cz(t)[? always appears, which has dimensions of 1/E.
This is a transition probability per unit of energy. Therefore, we can retain all the previous
formulas by replacing sums with integrals in dF, simply stating:

dwi—)E

wi—n (discrete case) — (continuous case)

Example Fermi’s golden rule under harmonic perturbation:

dwi_,E _ 27T|
h

717 |2 —_ P
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Chapter 7

Multi-Particle Systems

7.1 Symmetry Postulate

So far, we have limited ourselves to describing the laws governing the spatial and temporal
evolution of a single particle. How can we generalize the Schrodinger equation for a single
particle:

22 92
T 0+ V()U(r) = B () (71)

to systems composed of multiple particles?

Consider, for example, a system with two particles labeled as 1 and 2. Suppose that each one-
particle subsystem is described by wave functions ¢;(r;) for i € {1,2}. The most naive response,
which would suggest that the product of one-particle wave functions satisfies the Schrodinger
equation, fails in the general case. Indeed, such a solution, on the one hand, assumes that the
probabilities of particle presence are entirely independent (which amounts, among other things,
to neglecting all interactions between particles), and, on the other hand, potentially violates the
linearity of the Schréodinger equation. More generally, for a system of two interacting particles
through a potential U(ry,r2), writing

-h? 9% -h? 9% . ~ ~
( oz + V) 4 V2)  0.72)) 1 () alra) = B (1)),

2m 81'12 - 2m 8r22
presupposes that the two-particle Schrodinger equation:

-h? 9?2 -h% 9?
(% ori2  2m Org?

+V(ry) +V(rg) + ﬁ(m,rz)) Y(r1,rz) = Ey(ry,ra), (7.2)

is separable, which is not necessarily true. We must find a way to describe the system using a
single wave function that depends on all coordinates.

Suppose the particles are indistinguishable. This implies, among other things, that the
probability ]w(rl,m)]? of finding one particle at point r; and the other at point ro must be
equal to |¢(r2,r1)|?. In other words, we must have:

P(ra,r1) = €%(r,12)
= 1(r1,r2) = € PP(r2,r1) = €299 (r1,12)
L 42

= " = 1.
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Let P12 be the operator that acts on the system by interchanging particles 1 and 2, i.e.:

P129(r1,r2) = 9(ra,r1).

In the case of indistinguishable particles, this operator has eigenvalues +1, and the correspond-
ing wave functions are either symmetric (particles described by these functions are bosons) or
antisymmetric (particles described by these functions are fermions).

This reasoning generalizes to systems of n particles, where n € N. Let ¥ (ry,---,7,) be
the wave function of the system. First of all, note that exchanging particle j and particle
k for j, k e {1,---,n} is equivalent to exchanging particle £ and particle j, i.e., P;i = Py ;.
Furthermore,

P,k (ijﬂ,(rh e Ty TRy ...77-n)) =Py (¢ (r1, e Ty T i)
= ¢(7“17 Ty Tk, "'7rn)
=1 (1,[1(7“1, Ty, ...’rm...’rn)) ,

so, P;rP;r =1, and ]P;}f =P ; =Py ;. Finally, the sign of the operator IP;; must be the same
for all j, ke {1,--,n}. In fact:

P =P ;PP oPorlPy ;.

Notice that this has important consequences in the description of the physics of the system.
Consider, for example, an arbitrary observable O of the system. Using the above, its average
value must satisfy, for all j, ke N:

($IO) = (YPT, OP; k),

which implies 0= ]P; kO]P j.k» and the operator IP; , commutes with all observables. In particular,
if A is the system’s Hamiltonian, [ij,fl] = [fAI,IPj;C] for all j, k € N. Physically, this result
is expected: since the particles are assumed to be indistinguishable, there is no reason for the
system’s Hamiltonian to be modified by the exchange of two particles.

A "permutation operator' is an operator of the form IP = [P, ;. As per what was previously
discussed, since all IP; ; have the same sign, we can always simultaneously diagonalize I and H.
In other words, [P, H] = 0 for any operator P.

We have seen that the wavefunctions corresponding to eigenvalues of a permutation operator
are either symmetric or antisymmetric. Let’s demonstrate that this result generalizes to any
wavefunction, .

Consider the group S, of permutations on n objects and define the operators S = Ypes, P
and A = Y pes, sign(lP)P. Apply these operators to the wavefunction 1: S = 1hg and At = P4,
where g and ¥4 satisfy P 11ps = 15 and P p1p4 = —1p 4, respectively. Since P, is self-adjoint,
using what was previously mentioned, we have:

($sla) = (WPl ) = (VsIPj kloa) = ($s|P;ktba) = —(sliba),

which means that (¢gli4) is a wavefunction that is either completely symmetric or completely
antisymmetric. This is the symmetry postulate, which can be restated as follows:

Postulat 7.1.1 (Symmetry Postulate). The Hilbert space of a set of n identical particles is
either even or odd under transpositions Pjy.
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In the rest of this chapter, we aim to describe the physics of these systems. From this point
forward, H1 denotes the Hilbert space of one-particle states of a system of n particles, and the
set {¢n, (x;)}7-, is an orthonormal basis for these spaces. Any wavefunction 1 of the system can
be decomposed in this basis as follows:

Y(@1, 0 an) = (21| ® - @ (zn] [Y))
(z1] ® -+ @ (4] Z Cny,ymn |Pny) -+ P )

N1, Nn
= Z Cn17---7nn<x1|¢m>"'<xn|¢nn>
N1y yNn
= Z Cn17"'7nn¢n1(xl)'”(z)nn(xn),
Ny, Nn

which is neither symmetric nor antisymmetric, as predicted by the symmetry postulate. There-
fore, we can specify the form of ¢ a bit further.

7.2 Bosons

Bosons are particles described by a symmetric wave function v, which implies the following
System:

(@1, ) = SY(z1, - 20) = Y, Po(z,-,20)

PeS,

= Z ]P( Z cn17"'7nn¢n1(xl)"'¢nn(xn))
PeS, Ny, Np

= Z Cnl,-~,nn¢n1(mlP(l))"'ann(CU]P(n))-
PeS,

The normalization of the states requires ¢ (x1, -, ) = W Ypes, Pni (Tp(1)) Pn, (TP(n))-

7.3 Fermions

Fermions are particles described by an antisymmetric wave function 1, which implies the fol-
lowing system:

¢($1,"',$n) = _Aw(xh"'axn) == Z Slgn(]P)]Pw(xlv7$n)

PeS,,

=" Z Slgn(IP)IP ( Z Cnla"'7n7L¢n1 (xl)...¢n7L (xn))
PeS, N1, Np

= ZS' Sign(lp)cnl,---,nn¢n1 (xP(l))¢nn ('rIP(n))
PeS,,

We recognize the expression of a determinant. If we also impose the normalization of the states,

we obtain:
( 1 Gy (1) Py (Tn)
1/} 171,"'7%1) e : :
Vil] o @) o ()

From properties of the determinant, it can be directly deduced that the fermion wave function
is identically zero if two one-particle wave functions are identical, meaning that two particles
cannot simultaneously be in the same state. This is known as the Pauli exclusion principle.
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7.3.1 Non-interacting Fermions:

In the particular case of a system of n identical non-interacting particles, the system is described
as a sum of n-particle Hamiltonians: H = iy I:Ii, where I;Tl- acts on coordinate i. Let ¢, be
the wavefunctions corresponding to the eigenstates of H and E, the corresponding energies:
ﬁlgﬁn(wl) = E,¢n(x;). Since the particles are identical, all H,; are necessarily identical:

Erﬁbm (1) b, (Tn) = (Bny + -+ Epn,) (Pn (21) 00, (T0)) 5

and the sum of energies remains unchanged under coordinate permutations:

ﬁ¢n1 (le(l))"'%n («TlP(n)) = (Epy ++En,) (¢n1(3311>(1))"'¢nn (iUIP(n))) .
In other words, we have the following equality:

Gny (T1) P, (70) Gny (1) =+ P, ()
: : :(Enl+...+Enn) : :

1/1(5617"',%)=ﬁ : : : :
ann(ﬂ?l) d)nn(xn) ¢nn($1) ¢nn($n)

7.3.2 Exchange Terms:

Consider a two-fermion state:

(a1, 22) = % (61.(21)da(2) — b1 (22) ba(21))

with wave functions ¢1 and ¢o. The expectation value of any observable of the system is:
A 1 A
(01016) = [ dor [ des (5 (on(an)onten) - r(e2)on()) Olonan)

x (% (¢1(x1)d2(22) - ¢1($2)¢2($1)))

:%fd:Ul/dxz(aﬁf(xl)qﬁ;(a:g)@(g:hx2)¢1(331)¢2(x2)

+ 07 (22) 05 (21)O(w1, 22) p1 (w2) P2 (1)
— 61 (21) 85 (22) O (w1, 22) 1 (2) P2 (1)

— ¢} (22) 85 ((21)O(a1, 5E2)¢1($1)¢2($2))-

The last two terms are exchange terms.

7.4 Second Quantization:

Second quantization is an approach used to represent systems composed of multiple particles.
We consider a situation where the number of particles can potentially change, noting that a
particle’s state is entirely determined by the one-particle functions in the basis of Hi. We
construct the Fock space where kets indicate the number of times a wave function is involved.
It’s worth noting that for bosons, the n; appearing in |ny,ng,---) can be arbitrary, while for
fermions, they can only take the values 0 or 1 due to the Pauli exclusion principle.

We introduce creation and annihilation operators to increase or decrease the number of
particles. We distinguish between the cases where the particles are fermions or bosons:
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e Fermionic Case:

611: |n17 ...’ni’ > = (—1)n1+'“+ni*1(1 —_ nl) |n1’ ...’nl- + ]_’ >,
éi |n1’ ’n“) = (_1)n1+"'+ni—1ni |nl7 N 1’ >’

Let’s define the anticommutator of two operators A and B: {A, B} = AB + BA. It can be
shown that creation and annihilation operators in the fermionic case satisfy:

— {circj} ={c},cl} =0
- {ci,c;} = 5”

¢ Bosonic Case:
éj|n17...7ni7...>:,/—ni+1|n17...’ni+17...>’
éi|n17"'7ni7"'>: /ni|n1’...7ni—1’-..>,

It can be shown that creation and annihilation operators in the bosonic case satisfy:

We observe in the bosonic case an analogy with the results obtained in the study of the
harmonic oscillator.
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Chapter 8

Variational Principle

8.1 General Idea:

Consider a physical system described by a Hamiltonian H. Let H be the Hilbert space associated
with the system’s states and {¢,} be an orthonormal basis of wave functions, with E,, as the
energies associated with the corresponding states. For any state [1)) of the system, the following
inequality, known as the variational principle, is always satisfied:

WAk | o

(W)
where FEj represents the energy of the system’s ground state. Furthermore, equality holds if
and only if |[¢) = |¢g), and ¢¢ is non-degenerate. We provide a proof of this fact in the discrete
case, and the continuous case easily follows by using properties of the integral. In the basis of
eigenstates, the system’s Hamiltonian is rewritten as H = Yoo En |on) (Pnl, so

8

By [(1]én)?

0

> By io (b))

([HIv)

n

8

= EO Z (W%)(%’Tﬂ)

n=0
= Eo{¢[y).

Idea: The previous relation will help us approximate the ground state. The method will be
as follows: we start by approximating a certain wave function corresponding to a state |¢), and
then we use the variational principle to find the parameter values that minimize .

This method generalizes to excited states. For any [1)) € H such that (¢g|y)) = 0, the following
inequality is always satisfied:

(Y[H|v)

>
(Ylv)
The proof of this fact is identical to the proof of the variational principle for the ground state
since the term involving |¢¢) drops out by the choice of .

Ezample 8.1.1 (One-Dimensional Harmonic Oscillator). The system’s Hamiltonian is given by:

H=-—— 4+ —muw?z?. (8.1)
2m dz? 2
—_— —
=T =V
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We introduce a trial function 1, (x) = ﬁ with a > 0. Note that this choice has no physical
validity since the solution should decrease exponentially at infinity. Let I,, = [ d:pm for
any n € N. We calculate:

7 f+°°d 1 1 tan( T )oo ™
= r——— = — arctan(— = —,
S ?+a +a Va'| o Va
dI
d_;:_nInJrl-
Therefore I = %a_%, I3 = %”a_g et Iy = ?—ga_%. After repeated integration by parts, we find :
. roo1 2 1 d 1 | [(d 1 )\ h
T =[d — = — —[(—— )d:—4I—I(——)
(wITh) E TP +adi??+a w?+adra?+ale J \dr z%+a v (I —aly) 2m
=0

o0 2
(YIV]e) = f dv’Um = (1 - al) (%WWZ) et (Y[¢) = L.

The energy corresponding to a state |psi,) is given by

) 2
E(a) = M = A1 + lmaﬂa,

(Yaltha) ~ 4ma 2

and we seek a such that the energy is minimal:

_dE(a) =0 = 1mwQa2 = h—2 h

— = .
da 2 4m “ mwv/2
The energy of the ground state is given by E (m: \/5) = % ~ (.72hw. Note that the approximate
value is considerably higher than the exact (known in the case of the harmonic oscillator) ground
state energy: 0.72hw > 0.5hw.

Note 8.1.2. In our case, since we are approximating states, it is impossible to strictly impose
(dolt). If [1hg) is the approximation of the ground state, at best we have (1|1)) = 0. This implies
the introduction of additional errors.

Ezample 8.1.3 (One-Dimensional Harmonic Oscillator:). Now, we want to determine the first
excited state of the one-dimensional harmonic oscillator. The Hamiltonian is still given by
equation Let’s set wa(w))m with @ > 0. This function is odd under the inversion
x — —x. Therefore, it will be orthogonal to the ground state 1y(x), which is even.

Note 8.1.4. We have chosen to divide by (2% + a)? rather than (22 + a?). This is due to the fact
that even if /(22 + a?) is square-integrable, the potential term would eventually diverge.

For the computation, we will need the following integrations :

- 1 5 357
I :fd - = 77/2 I - *9/2
) T Erra)r T 16" 57 128"
x 2
T T 63w
J:f—:_—5/2 Io = 20T -11/2
) @rar T 16" 67 956"

r xd 7r
k :fd B ————T
! R x(az2+a)4 16"
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Kinetic term:

. h? T x
Tlb,) = ——— i =
(GalTla) 2m m(a:2 +a)?dr? (22 +a)?
wer o (d o« Y
=—fdx a_ T
2m . dz (22 + a)?
h2 [ 1 42
:_fdx _ _
2m (22 +a)? (22+a)3
h? ["" i 3, da
= — €T —_
2m (z2+a)? (22 +a)?
= Ll (914 - 24al5 + 16a°Is)
2m
(g e gy o
2m \ 16 16 16
3 R
= —7r—a_7/2
16 2m
Potential
~ 1 5 r '
(@ulV100) = g [ dos—ss
1
= §mw2k4
= Zmw?a 32
32

Finally, the norm is

X

<¢a|¢a)=/d$m

—0o0

1 (3h* -1
E(a) = - (S—a_7/2 + mwQa_?’/Q) . (a_5/2)
2\ m
h? 1
=3—— + -—mw’a
2ma
E 21 1
dE(a) = —Sh—— + —mw?
da 2ma? 2
dE 2
da 2ma? 2
3h?
o’ = 2,2
m2w
h
a==v3—
mw
3h? 3
Ei(a) = o M ihw
2m h/3 2
We find E(a) = % + %mwza and the minimization of the energy gives us a =

2 2

d2

2
16

allows us to approximate the energy of the first excited state :

F1(a) = V3hw ~ 1, 732hw,
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which is much superior to the effective value, known of the energy of the first excited state of
the oscillator, that is Efﬁ =1,5hw.

More generally, if one cannot use a symmetry argument, one can always seek a state |¢) that
minimizes the energy expectation value, E = (¢|H|¢) /(¢|¢) with the constraint (p[)) = 0, where
|t} is the variational solution found for the ground state. If |¢)) is a good approximation, then
its component orthogonal to |0) will be minimal. In this case, there is a high probability that
the variational solution |¢) will be almost orthogonal to |0) and will also provide a relatively
good approximation to |1).

Note 8.1.5. Note that the variational approach makes error calculations extremely complicated:
finding a lower bound for the sought-after energy assumes that a better approximation to the
state is known, which makes any error calculation for the first approximation absurd. Further-
more, for any arbitrary wave function 1, minimizing the error actually leads to restoring the
Schrédinger equation.

We can try to find the exact solution to the problem using the variational approach. Consider
a Hamiltonian H and an arbitrary state ¥(z). The energy expectation value is given by

B[, v*] = Wlil) = [ doy iy

Since 1) is a complex-valued function, we consider E to be a function of ¢ and ¥* (i.e., of R(v))

and J(v)).
Introduce an infinitesimal variation d¢*(x) of ¥*(x), with d¢)*(z) - 0. We are treating

and ¢* as two independent variables, and thus
E[¢,¢*+5¢*]=/dw*f1¢+fdx5¢*ﬁ¢
and
OF = B[, +00"] - B[v,47] = [ dusw” iy

It is necessary to introduce the concept of a functional derivative at this point. Alternatively,
we can imagine a function v "discretized" on a grid z;, j = —o0,---,1,2,---. In this case, we can
interpret this problem in a variational context with an infinite number of parameters 5%’-’ =
0% (z;). This way, we recover the concept of a traditional derivative.

To minimize E, we need JF = 0. Now,

SF - f dws” Hy
In the discretized version,

OF = Z Sy Hp;
J

and the (true) derivative of E with respect to ¢; is

oE .
= Hi;
a: J

The minimization condition is then

OF
o0

=0 Vj= Hipj=0V¥j=1;=0
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and similarly for @ZJ;

This is a pathological result, explained by our omission of the norm constraint: we want

() = 1.

To find a constrained minimum, we use the Lagrange multipliers.
(¥|H ) with the constraint ([1)) = 1. We introduce the functional

E[v, 4", A] = fdw*fh/)—A([ dw*¢—1)
As before:

5E:fda:5¢*ﬁf¢—Afda:5¢*zp

We want to minimize

The condition 6 E' = 0 for arbitrary variation §¢*(x) implies equality of the integrands:

Hy =\

It’s the Schrédinger equation! The variational principle, without additional conditions, should
lead to the exact solution of the problem.

Reminder 8.1.6. (Harmonic Oscillator) We have

with [&,p] = ih. Let’s introduce

We note

1
H="+-mw’2
2m 2
g /MY 1 R
= h \/—p
~ mw .

a = — X —
2h \/—p
h
&= (a+al)
2mw
h
p=iy/ o (a-ah)
2
[af,a]=a'a-aal =1

Why is this commutator so important? Let’s try to define a' — 2al and a — 2a.

Note 8.1.7. Tf |$) such that da'|¢) = A|¢) then
aa'(a'|g)) = (A-1)(a'|¢))

the choice of a' and @ ensures that aal is the operator N, not aN.

There is a ground state |¢g) such that

Demeo.

a'po) =0

aa' (@*[¢n)) =
N——
[¢0)

(0= )" 6n) =

@™ ) I = 0
= 0" |y o<
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The spectrum is
A 1
H[6n) = heo(n + 5) l6n)
The norms are
a|pn) = vVn+1|pni1)
&T |¢n> = \/ﬁ‘¢n—1>

(a)"

The {|¢n)} are non-degenerate, we thus have (¢;|¢;) = 6;;.

Note 8.1.8.
<¢n|‘%|¢n>= <¢n’ﬁ‘¢n> =0
and
h
<¢n|§;2|¢n> == 2—(2n + 1)
mw
h
<¢n|ﬁ2|¢n) == %(2% + 1)

h
for n =0 we have AZAp = 5

For a Harmonic oscillator in isotropic 3D, we have

A2
A 1
H = |p| 2|f"2

= — 4+ -—nmw
2m 2
Note 8.1.9.
[B” = p2 + P, + b
%7 = 2%+ 9% + 22
thus

A

ﬁ:Hw+FIy+FIZ

=P 22
2m
A2
. P R
H=-"24+ mw2y2
2m
£
. 1
H=Le ) 2252
2m 2

Separable hamiltonian:

V(@,y,2) = Yn(2)Pm(y)&i(2)
N 1 N
where H, 1, (x) = Ex(x), with E, = hw(n + 5), similarly for § and 2. Thus Hv = E,,,;¢, with

3
Eppy=hwn+m+1+ 5) Why is the harmonic oscillator so important?
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1. Except for pathological cases, all systems admit a harmonic approximation.

Ezample 8.1.10. Central Potential We have

h? ? L? a

__+—
2u0r2  2mr? r

One could start from the solution of the harmonic problem and calculate more accurate
solutions using perturbation theory.

2. Quantum Field Theory for Multi-Body Systems. The state of a free particle with momen-
tum hk corresponding to one quantum of energy can be written as |1). Thus, two particles
in the same state will have twice the energy, which can be understood as the state |2)
of the harmonic oscillator, and so on. The states of IV free particles are described as an
infinite set of harmonic oscillators, one for each Ak.

More formally, this result can be obtained from the consideration that the wave function
1(r) can be treated as a dynamic variable, and thus as an additional operator, denoted
by ¢ and ¥'. This procedure is called second quantization.

8.2 Hartree-Fock Theory

We consider a system of N spinless fermions. As in the previous chapter, we work within the
Hilbert space H; of single-particle states, where the set {d)nz} -, represents an orthonormal basis
of single-particle wave functions. Under these considerations, any wave function for N particles
1) can be expressed as:

1 ¢m€x1) ¢nn($n)

N' : : s
In light of the above, we can consider the ¢, as variational parameters. The Hartree-Fock
approximation involves representing the ground state as a single Slater determinant, so we need
to choose the ¢, that provide the best approximation.

The Hamiltonian of the system is given by H =T + V', where

Y(x1,-,2N) =

e The operator T is the total kinetic energy of the system, which is the sum of the kinetic
energies of the N particles:

N N
=2 ti=) -
=17 A

e The operator 1% represents the potential energy of the N particles, given as the sum of
potential energies of each pair of particles:

V = Z ‘A/i,j7
'7j

i#]
where Vi j = V (2, 2;).

We work within the Fock space. We have:

N
(UITT) = ; nilions) =%, [ do67, (DT ()60 (), (82)
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and

(<¢m¢nj|v|¢m¢nj> ~ (6, O, [V |y bn,)) (8.3)

||M2

N 1
(WIV1o) =3 3

Z 1]d$1d$2(¢n (331)(25” ($2)V($171'2)¢n1($1)¢nj(1'2) (8'4)
ij=

= &n, (wl)%;(ayz)f/(m, 2) n; (1) Pn, (wg)). (8.5)

The first term in the expression for (1)|V|y) is called the "direct term," while the second is the
"exchange term."

The goal is to minimize (|H|p) = (|T]))+(v|V])) subject to the n? constraints: (Dn;|dn,) =
d; ;. We use the theorem of constrained extrema:

Theorem 8.2.1 (Constrained Extrema). Seeking the extrema of a function F(x,y) under a
constraint f(x,y) =0 is equivalent to searching for those of the function:

H(x7y7A) = F(l’,y) _)‘f(x7y)

Therefore, a priori, we should introduce n? Lagrange multipliers. In fact, it can be shown
that )\@j = )\Z*J

We consider ¢ and ¢* as independent variables. As an example, the variations with respect
to ¢y, vyield:

o1 :5(Z/d$¢;‘j($)£¢n]‘($))
-3 f dzde}, ()i, (x).

Similarly, the variations in V are:

sV = Zfdfﬂlfdfﬂz(wm(ﬂ?l)% (22)V ¢, (21) ¢, (22)

j#i
= 065, (x2) 65, (21)V P, (21) P, (332))'

and

3L i (0nakons) =1) = Dhiy [ dods (216 (o).

We want to minimize F = (Y| H[1p) - Y, ; Ni j ((anl‘(ﬁnJ) — 1) with respect to ¢p,,. We, therefore,
impose 5 ¢ =0 for all ¢, which leads to the equation:

R N R R N
ton, () + Z; / d$2(¢;j($2)v¢m(33)¢nj (z2) - ¢2j($)V¢m(l‘)¢nj($2)) = Zl)\i,j%j(ﬂﬁ)- (8.6)
j= j=

With no loss of generality A; ; = €;0; j, we end up with the Hartree-Fock equation :

hQ N R R
g o)+ 2 [ (07, (22) P (016, (02) - 65, (V6,200 (2] = 0, 0.
j=1

(8.7)
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8.3 Hartree equation

The term directly from the potential leads to the Hartree term in equation :
A N A
Vit (2)n, (@) = 3. [ ey (22)V (2,22) b, (22)m, (2):
j=1

In the Hartree-Fock equation, the term VH(a:) can be interpreted as a mean-field term, i.e., a

potential of the form (1, z9) = Thus, we can rewrite the Hartree term as:

\wl T’

2 |¢"J (‘TQ)‘

_m2|

Vir(z) = Zfd
fd 22] 1‘¢n](x)‘

|z — 24|
fd o2 P( 2)
|x xo|’

leading to the Hartree equation:

2
_zh—v b (2) + Vit ()6, (&) = €s0m, (). (8.8)

Note that the potential differs for each ¢;. The Hartree energy is given by:

E = L <¢nz|t|¢nl> 2 Z(anzﬁbnjwwnlﬁbn]) (89)
< 2p(21)p(x2)
= 3 {nl6n,) + 5 [dn [ dnse g, (3.10)

It should be noted that the Hartree potential energy is a functional of the density p(x), as p
is a function of a single variable. If the exchange term is negligible, the initial N-body problem
reduces to a one-body problem.

8.4 Thomas-Fermi Approximation:

The goal is to approximate the total kinetic energy of the system using a "well-chosen" functional
of the density. We introduce

2 2 5
T (o)) = 20 (350} [ ()’

We want to minimize E(p(x)) subject to the constraint [ da3p(z) = N, which leads to the

equation:
6(E(p) - /\(f drp(x) - N)) =

from which we derive the Thomas-Fermi equation:

§h_2(37r fd3xp($)g +V(x)+€2fdx2 |$p5:);)2| ~

where V(z) is an external potential.
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8.5 Density Functional Theory:

The Hohenberg-Kohn theorem generalizes the ideas from the previous sections:

Theorem 8.5.1 (First Hohenberg-Kohn Theorem). The energy E of the ground state of an
N -particle system defined by H is an unknown functional of the density p(z).

The Kohn-Sham theorem, formulated shortly after, allows reformulating the problem in
terms of a Fermi-Thomas expansion differential equation. For one-particle states ¢;(x):

(t(w) +V(x)) di(x) + Vop(x)pi(r) = €ipi(),

where Vo is the correlation and exchange potential, which is unknown.
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Chapter 9

Density Operator and Open
Quantum Systems

9.1 Density Operator:

Consider a system composed of two subsystems, A and B. Let {|i),i € N} be a basis of states
for A, and {|u),n € N} be a basis of states for B. An overall state 1 of this system can be
decomposed in the basis of the eigenstates of the subsystems as follows:

)= Y auli)e |u).
iy

If O is an observable of the system A, then O®1p is an observable of the total system, and the
average value of O in the total space is given by:

(0) =(0®15)=(¢|O@15v)
=2 2 05,0, (Gl @ (v]) (Oli)) ® (15 1))
IV LI
= 20 2 i (G101) 8y
IV LI
= Z Z O‘;,uai,u (J|O|Z>
ij K
Pij
= 2. pij (jlOi)
]
= Zpijéji
5J
= Tr(pa0),

where the last equality is obtained by defining an operator p4 acting on subsystem A, and its
matrix in the chosen basis {|i),i € N} is given by the coefficients

pij = Y a0 = {ipl)(ljp).
I

n

In other words, p4 takes the form:

pa= T SN o (ul (|w> <w|) e ) .

AV
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This operator is called the density operator. Formally, it can be seen as the quantum physics
equivalent of phase space density. Note that since the trace of an operator is invariant under a
change of basis, the use of a density operator to calculate the average value of O does not depend
on the choice of the basis used to define this operator. Also, note that we have the following
properties:

Property 9.1.1. 1. The density operator is self-adjoint, that is to say, p; =PA,

2. Tr(pa) =%, pii = Li vl = ) =
3. The density operator is positive semidefinite, i.e. (¢|pa|d) >0 for all|p)e A
Demo. 1. We have:

ij = Z a;uaj,u

o
p-]l = Z a.;l"’az"u

"

One should see that
pij = Pji
2. We compute:
Yopii =y 0 = > (i) (lip)
7 A i M
= Y liplw)?
(N

The i) and |u) form a basis of A and B, respectively. Thus, the sum over ¢ and p give the
norm of [¢), which is by definition normalized to 1.

3. We compute :
(Blpald) =32 D (Sl (Glo) il ) (xplin)

(YA
= Y BB
o
=8]* > 0,
where 3, = (@|i){ip|)

Notice that these properties imply, in particular:
o There exists a basis in which py4 is diagonal (from point 1),

e Furthermore, points 2 and 3 impose a particular form on the diagonal representation of
the operator p4:
=2 pili) i
J

where p; >0 and ) p;j = 1. Thus,
(0) = Tr(pa0) = 3 p; (4lOL) = Xp; (0) .
J J

where (O) denotes the average value of O for the subsystem consisting of state |7).

1)
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So far, we have described the state of a system using an element |¢)) from the Hilbert space.
Note that it is also possible to describe this state using the density operator p = [)(¢]. A
density operator of this form is called a pure state of the system; otherwise, it is referred to as
a mixed state or statistical mixture.

In the case of a pure state, the average value of an observable O is given by:

(O) =Tr(j)(¥] O)
= 3 (i, ulv)) {$1Oli, )
(Y

= (YOI Y i, 1) (i, plp)

(7
= (Y[Oy) .

Furthermore, if a density operator describes a pure state, then it is a projector, i.e., p> = p. In
fact, the two properties are equivalent: if p? = p, the eigenvalues of the density operator must
necessarily be 0 or 1. But since the sum of the eigenvalues of a density operator must be equal
to 1, there must be a single eigenvalue of the density operator that equals 1, and it is unique.
Let |tp,,) be the associated eigenstate. We have p = |1y, ) (1)y].

In this chapter, we have introduced 2 density operators, pa:Ha - Ha and p: Ha Q@ Hp —
Ha ® Hp, is there a link between them? We will show p4 = Trg(p).

Demo. We have
p=0)Yl= Y aiag, lip) (5|
;v
But pi 0 = ama;y. By definition

*
pa =) Qipej,
o

thus, defining

Trg(p) = Y (1lplu’)
&

We have
222 i, [1)(7] =30 D i, O vy [1){J]
1] M wotp,gv
=2 > ageag, (W] (i) ® ) (] ® (v]) [u')
woip,gv
= > (Wlpl’) = Trp(p) = pa
I

Ezample 9.1.2. Consider a state |¢0) = a|00) + §|01) + v|10) + 6 [11). We have:

o> o a*y a*é
Bra |82 By B*6
Yo B WP oyef
§a 68 &y |of

p=10)¢l =

and
(laF +|87 oty +ﬁ*5)

pa=Trp(p) = Z (zlp)lz) = Bra+v*B |y +]6]2

z=0,1
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9.2 Time Evolution:

Let’s consider a density operator in diagonal form at ¢ = 0:
p(t=0) =3 a;1h;(0)) (1;(0)]
J

We are interested in determining the laws governing its time evolution. We assume that the
statistical mixture does not change over time. In other words, a; does not depend on ¢, and

p(t) = 3 a1 () (5 (B)] -
J
The time evolution of a state has already been characterized as:

ry:ii
[¥;(2)) = e [1h;(0))
Using these two equations, we obtain:

Ht
h

p(t) = X oo fu (0)) i (0)]
J

We differentiate:

A

HY e , —idft
o B OO

; Ht
D

+Z%NTwmmwmm@%%@
o\ (&
_(ﬂg)p+sz)

L Op A
h—=-[H 9.1
L <[, p), 91)

which leads to the equation:

describing the time evolution of the density operator. Note that p does not define an observable

physical quantity!

Ezamples 9.2.1. 1. Consider the Hilbert space of states {|-),|+)}. The operator S, acts on
this basis as S, |+) = %|+) and S,|-) = —% —). The state [¢) = |[+) is a pure state of the
system, and the corresponding density operator p is given by:

0 0
p=lontul=(y 7).
2. Now, consider the Hilbert space composed of eigenstates of the x-component of spin:
{I+) =)} We have Sy |+) = % |+), and Sy |-) = —% =), Furthermore:

a3l
|+)a:_ \/§ ) dl )I_ \/i .
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The states 1) = [+) . are pure states, and the corresponding density operator is given by:

p=e), (o], = 2 (190, £1,) (], # 1),

In the basis {|+),|-)}, the operator p is written as:

L1
) 2
P=1L )

2 2

3. What would be the density operator associated with a statistical mixture composed of

1
50% of |+) and 50% of |-)? We have p = 3 [+) (+] + £ |-) (-] = ((2) )

4. Bell States: ¢ = % (J01) - |10)). In the basis of states {|00),[01),|10),[11)}, the density
operator p = [¢) (1] is given by:

= O

00 0 0
“1jo 1 -1 0
P=510 -1 1 0
0 0 0
Additionally,
o 1{1 0
pa=Trp(p)=> glilpli)s = = :
P olo 1
and L
o 1{1 0
pB=Tra(p) =) 4 {ilpli)a =5 :
& olo 1

What would be the density matrix of a union of two systems? Naively, we might want to
write p = pa ® pp. After calculations, we obtain:

Trppa@®pp =pa

and
Trapa®pp=pB.
In the case of a pure state [¢0) = [104) ® [¢B), we can write pa = |tpa) (4| and pp = |¥B) (V5]

We indeed have p = [¢)) (Y| = pa ® pB.
In fact,

p =) = ([va)® [vB)) ({val ® (¥B]) = [Ya)(val ® [VB){YB| = pa® pB

p=0)] = ([Ya) @ [¥B)) ((Yal @ (¥B]) = [Ya)(val @ [¥B)(¥B] = pa® pB

given the properties of the tensor product.
But as soon as there is entanglement, things become more complicated: let’s revisit the
example of the Bell state and consider the state ¢ = %. If indeed we had p=p4 ® pp, then

the density operator should be of the form:

100 0
1o 10 0
P=%lo o 1 ol

0001
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which contradicts the results obtained in the example above.
In fact, given the density matrices of two systems once they come into contact, it is a priori
impossible to access the density operator of the total system.

Ezamples 9.2.2 (Quantum Bits). 1. Systems with a single quantum bit: We consider a state
1) = X|0)+ 1 |1), where |A]? +|u|?> = 1. As seen previously, the density matrix of the system

is given by:
AP A
= w = * )
‘ ><¢’ A L ’ N|2
We notice that in the case of a pure state, the density matrix provides the maximum

information about the system.

2. Systems with two quantum bits: We consider a system composed of two subsystems with
a single quantum bit A and B.

o We are interested in the density matrix associated with the state 1)) = |p4) ® |dB),
where [1p4) = M04) + p|la) and |¢p) = x|0B) + B|1p). The matrix ps has been
determined in the previous section:

AP A
-t = (B, 12):

and p4 ® pp is a 4 x 4 matrix consisting of blocks:

A2 A
pason=loul - (e Hoe),

o Now, if we consider the state |¢)) = A|00) + p|11). The density matrix is given by:

A2 0 0 p*A
0 00 O
N 000 |

2
and py = Trp(p) = (|)E)| “32) Thus, the average value of any observable of the

(0) = A (O), +|u* (O),
We are interested in the temporal evolution of a system composed of two subsystems A and
B, described by Hamiltonians HA and HB, such that H = HA @lp+1lsa® HB HA ® HB In
other words, the two subsystems do not interact with each other. The time evolution operator
is given by:

system satisfies:

(A 0Hp)(t-t") “

Ut,t'y=e"—"n — =Us0Up, (9.2)

so any state of the system, denoted as [(t)) = [ a(t)) ® [¢¥p(t)), will evolve according to the
equation:

(1)) = [Wa(®)) @ [p(t)) = (Ua ® Up) ([¥a(t)) ® [5(1)) -

Ezample 9.2.3 (Decoherence and Pointer States). Consider a system S interacting with an envi-
ronment E. Decoherence is the manifestation of this interaction. This interaction favors certain
states, known as "pointer states," which are not affected by decoherence, regardless of the initial
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state of the system. In fact, equation [9.2] suggests that the interaction will favor the eigenstates
of the system since these states remain factorized over time, with the environment not acting
on the system. However, the state of the environment evolves because the system interacts
with the environment. For example, if a system composed of a quantum bit interacts with the
environment, let {|0),|1)} be the pointer states of the system and |0g) be the initial state of the
environment. Suppose the time evolution is given by:

0)@|05) =~ [0)®[1x),
1)@ |0g) > [0)®[25).
Suppose that after a time interval At, a transition occurs with probability p, meaning that after
a time interval At:
|OOE> —>\/ 1 —p|00E> + \/]_?|01E>,
[10g) —\/1-p[10g) + /P|125).

If the system is in the state |¢)) = A|0)+ u|1) at time ¢ = 0, then after a time At¢, it will be in the

state:
|w> =\/1 —p|00E>+ )\\/ﬁ|01E> + U/ 1 —p|1()E)+,u\/]3|12E)

The density matrix at the step At is given by:

M aap
ps =Tre(p) = ()\*u(l—p) |M|2 )

After n time steps of At:

i} (AP )
ps =Tre(p) = ()\*,u(l -p)" af? ) 7

so that ) .
. N wie”
lm ps = ( Npe T )

where I' = np.
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Chapter 10

Elements of Quantum Information

Computers are fundamentally machines based on physical processes. The physics of these sys-
tems is governed by the laws of quantum mechanics. One can thus consider every computer
as being "quantum." In reality, this is not the case: their operations can be ideally described
by elements of classical physics. For example, Alan Turing constructed a basic computer, the
Turing machine, using mechanical components (and following purely classical considerations).

A genuinely quantum computer fully utilizes specifically quantum phenomena (such as en-
tanglement) that have no classical equivalent.

During the 1970s, the issue of reversibility is addressed: a logical operation (such as XOR)
is irreversible.

OR

==k
—_ O = O
»—l»—t»—lO:x:

Table 10.1: Truth Table for XOR Operation

Indeed, it is impossible to determine from an output XOR(p,q) = 1 whether (p,q) = (0,1)
or (p,q) = (1,0). Thus, this operation dissipates energy. In fact, there are 4 possible input
combinations for 2 possible output combinations. Entropy, quantifying the unknown information
about the system’s state, is given, for IV possible combinations, by:

S:]{BIHN

Consider, for example, a system S consisting of a box containing a gas consisting of a single
particle.

Figure 10.1: System composed of a box with gas (a) when this gas can fill the box, (b) when
the box is split in 2 and the gas is restrained.
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If we consider this system to be isolated, then from (a) to (b), the gas has lost half of its
configurations, i.e., the particle has only half of the available positions. Assuming an isothermal
process:

65 =-kgln2
0F =6U - 08T isothermal = U =0
oU = same velocity

However, the entropy of an isolated system cannot decrease. If we have §S = —kpIn2 for a
XOR, it’s because it’s not isolated: it dissipates heat into a thermal bath, causing the entropy
of the thermal bath to increase by 65 = kpln2 (still assuming an isothermal process). Thus:

AL]dissipauted 2 kBT In2

In practice, we are still far from this limit. However, it’s possible to completely overcome this
by using reversible logic gates. That’s why we consider quantum mechanics here. In an isolated
system, the operations are given by the unitary time evolution:

il (t=t")

Ut,ty=e " &

which is unitary and, therefore, reversible.

Feynman became interested in this problem in the early 1980s (see the book "Lectures on
Computation"). He immediately recognized an opportunity in quantum mechanics.

Consider N classical particles with positions (ry,---,ry). The equations of motion are given
by ’f:j = Fj(T’l,'“,TN) or

T"j =U;
Q}j = Fj(rlv "'7TN)
resulting in 6N coupled differential equations. Simulating this system involves discretization:
dt — At and Azj = AtFj(ry, -, ). Typically, Fj(ry,-,7n) = Yk F'(2j,21). The algorithm
thus requires two loops, one over the index j and another over the index k, leading to a number
of operations in O(N?) per At.
Now consider a quantum system of N particles characterized by the wave function W(ry, -+, rn,t)

and the evolution equation:
., o0V
ih T HVY
For the numerical simulation of this system, it’s necessary to discretize time as well as space.
Let’s assume a spatial grid of M cells. For 3N coordinates, we have (M)3" elements. So, the
matrix H has a size of (M)*N x (M)3N. Matrix-vector multiplication is performed in O(N?)
operations, which results in a number of operations in O((M )6N ), which means exponential
complexity!
So, we go from a tractable algorithm (N?) to an intractable one (const™).
Feynman sees this limitation as an opportunity, through the following reflection: a classical
computer takes time T = O(At - const’V) to simulate this system, while nature takes time 7' =
O(At)! Nature can solve an intractable problem for classical computers with zero complexity.

If we could redefine all numerical problems in terms of 67%, we would have access to a
very powerful universal computer (even if we had to build a system that behaves according to
the desired H ). Currently (in 2020), this has not yet been fully realized, but some specific
algorithms have been discovered (Deutsch, Shor, Grover, etc.).
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10.1 Mathematical Formulation of the Qubit

A quantum bit or "qubit" is a "two-level" quantum system. This simply means that the states
are defined in a 2-dimensional Hilbert space.

We choose a canonical basis, which we call the "computational basis," denoted by {|0),|1)} =
Hi.

Notice the analogy between classical computing bits and qubits. However, qubits have a
fundamental difference. While classical bits can take the values 0 or 1, qubits can take values

|U)=«|0)+B]1), a, betaeC

with |o|? +|8|? = 1. Then, we can construct multi-qubit states. For N qubits, the space is given
by
HN=H1® - H;

| —
N times

For two qubits, for example, the space is then
Ha = {|0)®]0), [0)@ 1), [1)@]0), [1)®[1)} = {|00), [01), [10), [11)}
and the state of these two qubits is given by
|U) = «|00) + 3]01) + v [10) + 0 [11)

with [af? + B[ + |y* + |6* = 1

In practice, to realize a qubit, we look for a physical system that is completely characterized
by two states (or by a system with two energy states sufficiently separated from all others, so
that the influence of the others is negligible, an influence calculated according to perturbation
theory). The two main candidates for this practical realization of a qubit are currently the
electron’s spin and the photon’s polarization. We can also consider a pair of atomic levels, the
collective state of a supercurrent in a superconductor.

10.2 Quantum Operation

In the field of quantum information, systems are idealized: it is assumed that the only evolution
is unitary, governed by the Hamiltonian

[W(8) = U(t,t")[¥(t"))

~ CH(t-t")
Ut t)y=e'"n
Certain phenomena are thus neglected, such as interaction with the environment and decoher-
ence, for example.
For a system of N qubits, a quantum operation can be illustrated by a quantum circuit:

Each line represents the state of a qubit. This representation is due to the fact that a unitary
operation U is completely defined (by linearity) by its action on the elements of the basis of
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‘Hy. Knowing how U acts on |aq, -, an), where «; = 0,1, is enough to define U completely. For
example, consider the NOT gate:

which can be rewritten in vector form with |0) = ((1)) and [1) = (0):

()

1

(which is also the Pauli matrix o). This gate maps |0) (|1)) to [1) (|0)). Its action on an arbitrary
state |¥) follows from linearity.

10.3 Useful quantum gatesr

10.3.1

1 qubit

X
Y
Z
Hadamard

Phase

o[

10.3.2 2 qubits

LECEE

CNOT

c-U

general controled gate

c-Z
example of controled gate

—

T

0 1

X=0,= (1 0

0 -2
Y:Uy=(i 0
1 0

J=0,= (0 1
1 1

H= (1 -1

1 0

§= (O 7
i e—iw/8 0

0 e’iTr/S

1 000
010 0
Cyvor=1y ¢ o 1
001 0
lc)® |z) > [c) ® U |x)
100 0
010 0
C_Z_OOIO
000 -1

All quantum circuits can be constructed using sequences of H, S, T', and Cnor gates; however,
this takes exponential time. Some algorithms, on the other hand, do not require a complex
architecture and are, therefore, very efficient.

However, there is still no quantum Turing machine: it is currently impossible to systemati-
cally express every algorithm in quantum terms to achieve efficiency gains.
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10.4 Deutsch’s Algorithm

Consider a quantum gate Uy

|[z) — v |)
ly) —1 " —  ly® f(z))

where |z) and |y) represent one qubit each, f(x) is a Boolean function, and & denotes
modulo-2 addition.

We want to determine whether f(z) is constant or balanced, meaning either f(1) = f(0) or
f(1) = £(0), respectively. Classically, it is necessary to evaluate the function twice to determine
this. Deutsch’s algorithm allows us to know this characteristic in a single evaluation.

Consider the circuit:

0) —{H] (H}— |9)

A R

lo)  [41) [2)  lis)

Where H is the Hadamar gate, which sends |0) — %, and |1) —» %, [tho) the initial

state, the |11), [12), [13) the intermediary states, and |¢) the final state of the first registry. The
final state of the second registry is not presented. let us detail the intermediary states. Firstly

o) =10} ® 1) =[0,1) ,
and

Y1) = (H e H)|¢o) = (H e H)[0)®|1)
= (H[0)) ® (H 1))

_ (|0>;§|1>)®(|0)\;§|1)) ’

Before computing [1)2) = Uy [1)1), we should note that

Uylz) e (M) e (If(w)>— 1 @f(x)))

V2 ¥
o () it s -0
'x>®(|1>¢_§|0>) it f(a) =1

= [z)® (-1)/@ (%)
e (5]

where the last step follows from linearity of the tensor product and shows that the action of the
operator on 2 qubits is essential to the algorithm.
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From the following relation,

[2)=Ug 1) =U (

7

|0>+2|1>)®(|0)¢—_I1>)

(-1)7@ o) + 1)f(1)|1) ( )

(1)/© (|o> |1>) (|o>

) if £(0) = /(1)

) 7 7
(-1)/© (’0@'”) o ('O)Jﬁ'”) it £(0) = £(1).

Which finally leads to

[¥3) = (H @ 1) [h2)

SITHE S

N 0) - [1)
1O ye ( .

= (- 0y e f(1)®

if £(0) = f(1)

if £(0) # f(1)

0) ﬁm)_

We only need then to execute a measure on the first qubit of an observable that is diagonal
in the computational basis {|0),|1)}. The result of such a measure will tell us with certainty if

f(z) is constant or balanced.
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Chapter 11

EPR Paradox, Bell’s Theorem, and
Quantum State Interpretation

The absence of determinism in the quantum measurement process posed a major problem of
interpretation in the decades following the birth of the theory.

According to a classical idea, the measurement process merely reveals a pre-existing value of
a physical quantity. The doctor measuring blood pressure is simply discovering the value, which
existed independently and was the cause of the patient’s discomfort.

Without delving into the technical details of the measurement process (which, in principle,
should be designed with minimal interaction with the system to avoid influencing it), it could be
possible to establish the principle that the value of a physical quantity represents an "element of
objective reality" if it can be measured with a probability of 1 through a measurement process.
This value should, therefore, be pre-existing and independent of the measurement process. A
complete quantum theory should then, in describing this phenomenon, predict this value with
probability 1.

Unfortunately, orthodox quantum physics, as it is taught, does not meet these simple crite-
ria. In particular, given an observable fl, a self-adjoint operator in the Hilbert space H, with
eigenvalues {a, }, and eigenstates |a, ), the result of a measurement of A fulfills the above criteria
only for a system already in a state |a,), with eigenvalue a,. However, for any arbitrary state
|¥), the value obtained from the measurement of A is not pre-existing and cannot be predicted
with certainty by the theory. In such a quantum state, the value of A is not an "element of
objective reality." One might attempt to circumvent the problem by restricting the consideration
to the |a,) states alone. But this is not a solution because if two observables A and B have
[[l, B] # 0, then a system in an eigenstate of A is undetermined when measured by B.If Ais
therefore an "element of objective reality," then B is not.

It could be argued that the measurement process in quantum physics generally has a neg-
ligible influence on the system, and therefore, it can never be reduced to the classical idea of
measurement.

To address this question, Albert Einstein, Boris Podolsky, and Nathan Rosen published their
famous article titled Can Quantum-Mechanical Description of Physical Reality Be Considered
Complete? in 1935. This is Einstein’s most cited paper with over 12,000 citations on Google
Scholar. The EPR argument aims to show that — under certain assumptions — orthodox
quantum mechanics must be incomplete and, in particular, the results of measurements must
preexist, contrary to the principles of orthodox quantum mechanics. The assumptions of the
EPR paradox play a very important role. They are:

1. Exact correlations between measurements of two subsystems in a specific state (referred
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to as an entangled state hereafter).

2. The impossibility, through a measurement performed on one subsystem, of influencing the
state of another subsystem sufficiently far away (the locality assumption).

To illustrate the EPR paradox, an example of an entangled state corresponding to the first
assumption must be introduced. Historically, the EPR paper introduced a state describing two
particles, given by the wave function

U(x1,19) = f e (@2t To)p gy, hé(zo — 21 + x0)

This is a state for which the distance between the two particles is certain and given by xg. The
idea is to choose x( large enough so that two measurements performed on the two particles at
a sufficiently short time interval cannot influence each other through an interaction. This state
can also be expressed as

I\I’(xl,:z:z))=[ dpe%”lpe%(”*”)“[ dpe%xol]?)l@\—p)g

This expression can be interpreted as a linear superposition (with constant probability) of states
where both particles propagate with equal and opposite momenta.

There exists a version of this example due to Bohr, simple and more modern, using the spin

state of two spin—% particles.

1
V2
Here, 1 and | are, for example, the eigenstates of S.. This is the singlet state, i.e., the
cigenstate of S? (S = Sy +S5) with eigenvalue S = 0. Note the analogy with the original EPR
state: both are superpositions of states produced with opposite eigenvalues.

The state |¥) has another important characteristic. Let’s apply a change of basis in the
Hilbert space of each spin using a unitary matrix:

O:(a 5) t=at’ +8 )

U)=—(1®l+1®])

v 6 =yt +0 |

This change corresponds to transitioning from the basis of eigenstates of S, to the basis of
eigenstates of 7 - S, where 7 is arbitrary. Replacing these expressions in |¥) and after some
simple algebraic calculations, we find (with a negligible global phase factor):

1
\I]E_ ! /_I 4
) ﬂ(Tm Vet

where we used the property of the unitary matrix:

|det U| = |ad =8| =1
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So, the state has exactly the same form regardless of the chosen basis. This property is not
required for the EPR argument, but it simplifies the task.

Let |¥) be a non-separable state, meaning it cannot be written as a tensor product of two
states defined in the respective Hilbert spaces of the two isolated particles:

W) # [U1) @ W)

The condition of non-separability is essentially at the core of the concept of quantum entan-
glement.

Another important characteristic is the correlation between measurements performed on the
two subsystems. Imagine two distant particles. Two observers, Alice and Bob, each operate a
Stern-Gerlach device, which includes a magnet generating a non-uniform magnetic field capable
of deflecting opposite spin particles in opposite directions. The orientation of field B defines the
spin orientation of the observable. This device allows Alice and Bob to measure the spin S, of
their respective particles.

Alice measures first. If she obtains S, = +%, then, according to orthodox quantum mechanics,
she will have projected the system onto the projector

Nt el

The state will, therefore, be projected as
W)~ nell)

In this state, a measurement of S, by Bob on the other particle will give S, = —% with certainty.
On the contrary, if Alice measures S, = —%, Bob will measure S, = +% with certainty.

Imagine the experiment is repeated several times on the same state |¥). The results of
Alice and Bob will be strictly random but always entirely correlated. This correlation exists
independently of the axis along which Alice and Bob make their measurements. Indeed, we have
seen that |¥) takes exactly the same form when written in terms of the eigenstates of 7-|S) with
an arbitrary |n).

The EPR correlation is explained by orthodox quantum mechanics but also by a purely
"realistic" hypothesis that assumes the values of S,, and S, existed prior to the measurement.

Imagine a third actor, Charlie, who prepares pairs of beads - one white and one black - and
then places each in a box, randomly sending one box to Bob and the other to Alice. Upon
opening their boxes, they will find a white or black bead at random, but always of the opposite
color to the other.

The EPR argument maintains that after Alice’s measurement, the second assumption in the
EPR paper and Bob’s great distance ensure the impossibility of any influence from Alice’s mea-
surement on Bob’s particle. According to EPR, the only possible explanation for the correlations
is that Bob’s result was pre-existing. The same argument applied to a measurement along an
arbitrary axis 7 - |5') concludes that the spin values of Bob’s particle along the three axes &,
7, and Z are pre-existing simultaneously, which is prohibited by orthodox quantum mechanics
because [S'J,S’k] = iheiS).

EPR’s conclusion is that orthodox quantum mechanics is an incomplete theory, and the
result of a measurement - which, according to this theory, is random - is, in reality, pre-existing,
or, in other words, an "element of objective reality." With a single realization of the experiment,
it is obviously impossible to know if the result was pre-existing or if it was created at the time
of measurement, as per the idea of orthodox quantum mechanics. Therefore, EPR suggests that
with each repetition of the experiment, ideally with the same state |¥), the true state containing
the "elements of objective reality," i.e., the pre-existing values of the spins, is not the same but
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rather characterized by a random component in these pre-existing values, which justifies the
random outcome of the subsequent measurements by Alice and Bob. These additional variables
are commonly referred to as "hidden variables."

EPR’s conclusion is strengthened by another argument. Suppose Alice and Bob choose to

measure along two different axes. If Alice measures S, and obtains +%, Bob’s particle will be

in the state ||), . If, on the other hand, Alice measures along S, and obtains +%, Bob’s particle
will be in the state [|) = %(H‘)Z -),)-

Since Bob is at a great distance from Alice, it is reasonable to assume that Alice’s mea-
surement did not influence Bob’s particle’s state. The two states ||), and ||), must, therefore,
represent the same physical state. But this conclusion is prohibited by the orthodox interpreta-
tion of quantum mechanics since, in the first case, the value of S, is not an "element of objective
reality," whereas, in the second case, it is. Therefore, it is necessary to assume the existence of
a hidden variable that determines the outcome of Bob’s measurement of S’Z in both cases.

The three decades following the EPR paper saw several attempts to provide a demonstration
that the concept of hidden variables is incompatible with the predictions of quantum mechanics.
Almost 30 years later, John Bell embarked on the most successful of these attempts.

The work preceding Bell’s had produced "no-hidden-variables theorems" based on unjustified
or incorrect assumptions. Bell was inspired by research undertaken by Bohm around 1952. Bohm
had developed a theory that extended quantum mechanics by introducing a "pilot wave" - a form
of hidden variables.

The Bohm theory is perfectly capable of replicating all the predictions of orthodox quantum
mechanics while being a completely "realistic" theory. It thus stands as a counterexample to all
the (false) theorems from previous years. However, the cost of this success is the abandonment
of locality in the Bohm theory. John Bell comments on Bohm’s work as follows:

In this theory, an explicit causal mechanism exists whereby the disposition of one
piece of apparatus affects the results obtained with a distant piece. In fact, the EPR
paradoz is resolved in the way which Einstein would have liked least.

While EPR where convinced that a complete theory (using hidden variables) was emerging.
according to them:

While we have thus shown that the wave function does not provide a complete de-
scription of the physical reality, we left open the question of whether or not such a
description exists. We believe, however, that such a theory is possible.

Bohm then shows that it is possible to realize this theory by introducing an instantaneous
causal mechanism, thus abandoning the locality that Einstein held dear. Bell, in his 1966 article
(written before the one published in 1965), poses the question of whether giving up locality is
a necessary condition for realizing a theory that uses hidden variables and is compatible with
orthodox quantum mechanics (and thus constructing a theory that contains only "elements of
objective reality").

Suppose, on the other hand, that the measurement results are pre-existing. We call Z}L = :I:%
the value of the spin component along the axis 7 for particle ¢ (i = 1,2). These values will
change from one repetition of the experiment to another. Therefore, we can treat them as

random variables.

Consider three axes a, l;, and ¢, defined in the same plane and at an angle of 27/3 with
respect to each other.
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In this case, for each pair of axes:

_l+cos(2m/3) 1

P
* 2 4

For this realistic theory to reproduce this result, it is required that:
1
1 2
P(Z,+Z 5) =1

if o #3and o, 3 =a,b,é, and that:
zZt=-72

(EPR correlation)

Theorem 11.0.1. If the above assumptions are met, then:
P(Zy#Z3)+ P(Zy # Z2)+ P(Zr # Z2) 2 1

Demo. 7!, Zl}, Z! cannot all be different, as they can only take two distinct values.

In his landmark 1965 article, Bell successfully demonstrated this theorem. He claimed that
a theory based on the assumptions of locality and "realism" necessarily implies quantitative
constraints expressed as inequalities for measurement results. Orthodox quantum mechanics
violates these inequalities!

Here, we provide a basic proof of the theorem, which relies on the EPR result. Later on, we
will present a more general and self-contained proof.

We start from the singlet state:

) = (It~ 1)
V2

Suppose that Alice and Bob measure the components 7 - S and - S, respectively. Let 6 be the
angle between axes 1 and 7. It is observed (without proof, as an exercise for the reader) that
the probability that Alice and Bob measure two opposite values (i.e., +% and —% or vice versa)
is according to orthodox quantum mechanics:

~ 1+ cosf

P, = 5 0el0,7]

In each configuration of the possible values for these three variables, at least two of the three
will be equal. The union of the sets of configurations in which at least two of the three variables
are equal is therefore the set of all possible configurations.

{Za=2,y0{2y = 22y u{Z, = 2.} = {24, 24, 2}
The sum of the three probabilities is thus:
P(Zl=zh+P(Zl =2+ Pz} =2} 21
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Since ZL = -Z2, o = a,b, ¢, we have P(Z. = Zg,) =P(Z} + Zg), so:
P(Zy+Z})+P(Zy + Z2)+ P(Zt + Z2) > 1
O

According to the expression for P, = 1/4, the value predicted by orthodox quantum mechanics
for the same sum is:
P:l:+P:l:+P:E:3/4<1

This is inconsistent with the previous result. This inequality is an example of what are called
"Bell inequalities."

The EPR and Bell arguments can thus be summarized as follows.

EPR: If (1) we assume a principle of locality, and (2) we accept the correlations between
measurements on the state |¥), we are forced to admit that the measurement outcomes preexist,
meaning they are "elements of objective reality."

Bell: If we assume that the measurement values on |¥) (on different axes) all preexist,
then we obtain an inequality that is incompatible with the predictions of orthodox quantum
mechanics.

The conjunction of these two arguments, therefore, implies that the principle of locality
is incompatible with the predictions of orthodox quantum mechanics. We must admit that a
measurement has an instantaneous, distant effect.

11.1 Bell Inequalities: General Formulation

The argument used previously to deduce Bell’s theorem is based on two fundamental assump-
tions.

1. The EPR argument: locality and correlations predicted by orthodox quantum mechanics
imply the existence of hidden variables. In other words, "elements of objective reality"
associated with the measured quantities.

2. The validity of the perfect correlations predicted by orthodox quantum mechanics for
measurements on the singlet spin state.

Bell’s theorem sparked intense discussions in the years that followed, particularly about the
restrictive nature of these two assumptions.

Thus, Bell’s theorem can be improved in two aspects: firstly, it does not rely on the EPR
argument or on perfect correlations in the singlet spin state because they may not be realized in
practice. These resulting minor deviations can bring orthodox quantum mechanics within the
limits imposed by Bell.

To address these objections, Bell developed a generalized version of his theorem that (1)
starts from independent assumptions, without using EPR, and that (2) establishes inequalities
that depend on the value of certain correlations between observables continuously. Thus, it is
possible to show that, to bring orthodox quantum mechanics within the limits imposed by the
theorem, the measured values of the correlations should significantly differ from values predicted
by orthodox quantum mechanics — differences that would be experimentally measurable.

This new version of Bell’s theorem leads to the famous CHSH inequalities, tested by some
of the earliest experiments.

Suppose we make a measurement on a system composed of two subsystems that interacted
in the past (producing correlations) and are now very distant. The EPR state can be taken as
an example.
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a1 and «g are the control parameters that determine the type of measurement made on
subsystems 1 and 2, respectively. For example, in the EPR state, a; and «o represent the two
axes along which Alice and Bob, respectively, choose to make their measurements.

Suppose a1 and g are chosen freely and randomly by Alice and Bob, immediately before
the measurement, in a way that there is no way for Alice’s choice of oy to influence Bob’s choice
of Q9.

Once a; and ag are chosen, measurements are performed, resulting in values Ay and As,
respectively. According to orthodox quantum mechanics, A; and A, exhibit a random behavior
from one measurement to another, i.e., over multiple repetitions of the experiment under iden-
tical conditions (with constant values of a; and «y. For each pair of chosen values of oy and
g, the values A1 and As are subject to a probability distribution:

POq,OéQ(Ala AQ)

which generally depends on a1 and as.

It’s important to note at this point that the assumption of pre-existing values has not been
introduced yet. Nothing is assumed regarding the origin of the random nature of the results
Aq and A,. These values may be partly pre-existing and partly derived from the measurement
process.

In this sense, this initial assumption is very different from the assumption in the simplified
version of Bell’s theorem, in which pre-existing values are assumed from the beginning.

The concept of locality must be rigorously expressed. Simply factorizing the probability
distribution as follows is not possible:

Pal,az (Ala AQ) = Pa17az(A1)Pa1,a2(A2)

Indeed, the two subsystems may have interacted previously and thus contain correlations result-
ing from the initial preparation.

However, locality must imply a decorrelation of any random behavior in the outcomes of Ay
and As once the "elements of objective reality" (and thus the values of hidden variables) are
fixed. More precisely, let A represent the set of (hidden) variables that determine the "elements
of objective reality" in the measurements of A; and As. The value of A changes from one
experiment repetition to another, following the probability distribution P(\). Any correlation
between the values of A; and As should only be attributed to their dependence on A. In other
words:

Payas (A1, 42) = [ d\Pay as(A1, AN P(V)

where P,, o, (A1, A2|\) is the conditional probability distribution given a specific value of .
According to our definition of locality, any remaining random character described by Py, o, (A1, A2|))
must be decorrelated. Therefore, locality implies:

Poé17062(A17 A2|>‘) = POél (All)‘)POQ(A?l)‘)

with the additional assumption that measurements depend locally on a7 and as. For example,
P,, (A1|\) cannot depend on ap.”

Since a1 and a9 are arbitrarily chosen by Alice and Bob, our analysis must also include
the assumption that P(A) does not depend on «; and ag. This is an additional assumption
compared to the locality assumption, and it expresses the free will of Alice and Bob. This
type of assumption is referred to as "non-conspiracy." Indeed, since A is chosen by Nature, the
possibility that this choice is determined by Alice and Bob should be considered an incredible
conspiracy on the part of Nature, attempting to prevent any rational analysis.
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Let’s now define the correlation function C'(aq,a2) for the observables a; and «s.
C(01,02) = Fayz (A1 A2) = [ dXEay a0 (A1 A2 P(Y)

where Eq, a,(A1 - A2) is the expectation value of the product A; - A for a given choice of a;
and ag. Eq, a,-(A1 - A2|\) represents the same quantity, conditioned on .

EOtl,Oéz (Al ' A2) = Z A1A2Pa1,a2(AlaA2)
A1,A2

Eoya,(A1-Ao)X) = > A1 Ao Paiphay aiphas (A1, A2|X)
A1,A2

From these expressions, it is possible to prove the CHSH-Bell inequality.

Theorem 11.1.1. Suppose that +1 are the only allowed values for A1 and As. The hypothesis
above imply
|C(a,b) - C(a,c)|+ ‘C(a,b) + C(a',c)‘ <2

for all choices of parameters a,b,c,a’.

Demeo. We have
EOCLOCQ (A17 A2|)\) = EOél (A1|A)E062 (A2|)\) V)\v a1, ,02

from which

|C(a,b) - C(a,c)|+|C(a,b) + C(d,c)|

f [Ea(A1N)] - [By(A2|X) = Eo(A2N)| + [Bar (A1|A)] - | Ep(A2|A) + Ec(Aa|A)[]P(A)dA
[ 1146 A2l) = B Aol + By (4alA) + Ee(A2|N)[]P(A)dA

IA

IA

where the first inequality is taken from

[ @zl < [ 15(@)da

and the second one
[Ea(A1|N)] <1

The proof of the theorem follows from

Lemme 11.1.2. for z,y € R and z,y € [-1,1] we have |z —y| + |z +y| < 2
Demo.

(|x —y|+|z+ y|)2 =222 + 2y2 + 2|J,‘2 - y2|

422 22 > y?
02 %<y

<4
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The CHSH-Bell inequality is thus proven. What does orthodox QM predict for C(«,3)?
Consider bell state 1
V2
where [1) and ||) are the eigenstates of a spin component @ - S, we can show (exercise) that
orthodox QM says

W)= —=(nel) - elt)

C(a,b)=-a-b

where @ and b are the unitary vectors wrt which the spins are measured, and “.” is the Euclidean
scalar product. If we choose

we obtain the maximal violation of the inequality.
C(a,) - C(a,0)| +|C(@',b) + C(@, 2)|

+

—cos(%) + cos(%{)

:‘ V2 \/§+‘ V2 \/5:2\/§>2

2
2 2 2 2

—cos(g) - COS(Z)

This new version of Bell’s theorem, coming from only the locality hypothesis is also incompatible
with orthodox QM.

Since the publication of this original proof, tens of experiments, have demonstrated this
violation.
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Appendix A

Exercises

A.1 2014 exam

FEzercise 1 : 2 photon transition (1,5 points)
An atom is modeled by a 3-level system represented here, with wg # wy:

13)
hw!,
[t 2)
hwo
— 1)

Starting from ¢ = 0, this system is subjected to a perturbation V(t) = ety + e T where
0 =hQ1) (2] + hQ[2) (3], (A.1)

and €, € R are angular frequencies introduced here to simplify the coupling amplitudes. This
perturbation V' (t) represents the action of a photon field with energy Aw.

1. Calculate the probability P1(21 )(w, t) for the transition from the state |1) to the state |2) at
the first-order perturbation.

2. By examining the ratio Pl(Ql)(w, t)/Pl(Ql)(wo, t), show that at long times, the dependence of

P1(21 )(w,t) on w is sharply peaked around wy (resonance).

3. Calculate P1(§ )(w,t), the probability of transition from |1) to |3) at the first order.
4. Show that the probability of transition between |1) and |3) at the second-order perturbation
is Pg)(w,t) = |ag) (w,t)|?, where

(2

a13) (w,t) = (A.2)

00/ (ei(w0+w6—2w)t -1 ei(wé—w)t _ 1)

wo—w \ wo+w)-2w Wy —w

It can be shown (calculation not required) that this probability is written in the form

(2) _ 4929,2 ) 6t 4929,2 ) 6,t 4929,2 ) At
P (w,t) = I A S| +5(5,)2Asm > | oA sl 5 ) (A.3)
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where § = wp —w, 0’ = wj —w, and A = wp + w) — 2w. Qualitatively sketch the shape of
Pl(??)(w,t) as a function of w at long times. What about P1(22)(w,t)?

5. Deduce from the previous questions the schematic appearance of the absorption spectrum
(as a function of w, considering processes at the first and second orders) when the atom is
initially in the ground state |1). Take the limit of long times. Indicate for each absorption
line the process |1) — |f) involved, as well as the corresponding perturbation order.

6. How do you interpret the last of the three terms in equation (A.3)? What is the physical
process involved? Does it imply conservation of energy?

Ezercise 2 : Fine structure of an atom (2,0 points)

We are interested in the spin orbit coupling effect on the first levels of the hydrogen atom.
With such a coupling, the hamiltonian is H = Hy + Vg where (with g, ~ 2)

A i)Q 62 A A A ge 1 dV

Hy = o T Vi(r), Vi(r)=- Vis = A(r)L.S, A(r) = —

)
Me dmegr

(A.4)

S Am2c2 v dr

1. The total angular momentum J = L+ is defined, and we denote the eigenvalues of J 2, fLQ,
S’Q, J., L., and S, as j(j + 1)A%, 1(1+1)h?, s(s+1)h?, mjh, myh, and msh, respectively
(reminder: the electron has a spin of s = 1/2). What are the possible values of j as a
function of [7 What are the corresponding values of m;?

A2 A A2 N A PN A2 A2
2. It is recalled that L , L,, S, and S, commute with Hy. Express L-S in terms of J , L,
.2 A2 A2 a2 & s N .
and S . Calculate the commutators of J , L, S, J,, L., and S, with H.

3. We are only interested in the bound states of hydrogen. The simultaneous eigenstates
of Hy, J 2, and J,, denoted as {|nlsjm;)}, arise from the combination of orbital angular
momentum and spin. Are the states {|nlsjm;)} eigenstates of L.87 Are they eigenstates
of VLS? Justify.

4. Consider Vg as a perturbation to Hy. Calculate the energy variation AE,;; of the states
{Inlsjm;)} to first-order perturbation theory in terms of the mean values (R,;|A(r)|R),
where R,,; are the radial wave functions of the bound states. What is the correction for
the s states (I = 0)? For [ > 1, simplify the expression for AE,;; using the result from
question 1. Explain how the spin-orbit interaction introduces the "fine" structure of the
hydrogen atom.

5. In the context of our model, we focus on the 2P level (n =2, [ =1): what are the possible
values of j7 Denote the associated levels of fine structure as 2P;. Calculate their energy
shifts due to Vig, knowing that (Ro1|A(r)|Ra1) = a*mec?/(48h2), with o = €2/ (4meghc), the
fine-structure constant. Numerical application: at a level of approximation that doesn’t
require a calculator, estimate the energy shifts and the magnitude of degeneracy lifting
of the 2P; levels in eV and MHz (reminder: A = 1.05 x 10734 J.s, me = 9.11 x 1073 kg,
€0 =8.85x10712F.m™).

Ezercise 3 : Time evolution of a density matrix (1,5 points)
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Consider a two spin % system, with states defined in a 4d hilbert sapce with basis B made

of vectors [S7)®[55) = [S7S3). Here |S7) are the eigenstates of S’JZ (4 =1,2) with eigenvalues ﬂ:%.
For simplicity, we will write |11), |11), [I1) and |}|) theses same states. Suppose that the time

evolution is determined by the Hamiltonian
H=g(5 5 +5 ®57), (A.5)
where 5’; = S'Jz + zé’f
1. Find a matrix for H in the B basis.

2. Find the eigenvalues and eigenstates of H.

3. At t =0, the system is in [¥(0)) = |{1). Find state |¥(t)) at t. Hint: use the eigenstates
found above.

4. write the density matrix p(t) corresponding to the state |[U(¢)), in basis {|{{),[11),[L1), |[11)}.

5. Compute the reduced density matrix p1(t) of the first spin by using the partial trace over
the second spin.

6. Consider p1(t) at t =0, and at ght = 7. Discuss these 2 matrices underlying their nature
(pure or mixed) and discuss the link with entanglement between the 2 spins.

A.2 2015 Exam

FEzercise 4 : Sudden Displacement of Harmonic Oscillator (2 points)

mw?i>
2

and, therefore, by the Hamiltonian Hy = hw(a'a + 1/2) (where m is the mass and w is the

angular frequency). An experimenter prepares the system in the first excited state [1) = a' |0),
where |0) is the ground state of Hy. At t = 0, the experimenter accidentally hits the table,
causing the center of the oscillator to instantly move to a new position = = b.

Consider a one-dimensional harmonic oscillator characterized by the potential V=

1. Express the operator V(t) associated with the perturbation in terms of @ and a, i.e., such
that H(t) = Hy+ V (t).

2. Suppose the experimenter does not notice the displacement, and a very long time elapses.
Calculate, in this limit and to the lowest order of perturbation in b, the probability per
unit time Wi_,,, that the system makes a transition to an eigenstate |n) of Hy with n # 1.

3. Suppose, on the other hand, that after a time T" > 0, the experimenter notices the displace-
ment and instantly returns the oscillator to its initial position. Calculate, to the lowest
order in b, the probability P;_,, that the system is in a state [n) with n # 1 for ¢ > T

Suggestion: In this second part, if you don’t remember the expression for the transi-
tion probability, it may be useful to directly apply the time evolution operator Ug(t,())
(Schrédinger’s viewpoint). In this case, remember that Ug(t,0) = e‘iﬁot/hﬁl(t,O), where
U;(t,0) is the operator in the interaction viewpoint, given by U (¢,0) = T exp [—% fot f/[(t’)dt'),
and Vj(t) = ¢tHot/hyy o-iHot/h
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FEzercise 5 : Variational Principle for an Anharmonic Potential (1 point)
Consider a one-dimensional particle with mass m, subjected to a potential V' (z) = aa?.

1. Up to a dimensionless factor, we can express the energy of the ground state as a product
of powers of the constants that define the problem, i.e., Ey o< h%mPa’. Find the values of
a, b, and c using dimensional analysis alone.

2. Using the variational principle, determine an upper bound on the energy E; of the ground
. . . 2
state. Use a Gaussian as a trial function: ¢(z) = exp (—;7) Note that

+00 +00 +00 3
f eVdy =/, f eV dy = g f yle ¥ dy = TV

FEzercise 6 : Entanglement criteria (2 points)
A quantum system is composed of 2 subsystems and is defined in Hilbert space H = H1 ® Ho,
where H1 and Ho are the space of both subsystems respectively. The state of such a subsystems
is separable if we can express its density matrix as

ps =Y mry @ pl, (A.6)
k

with >, pr =1, pr > 0, and p,(:) and p,(f) being density matricies in spaces H1 and Ho respectively.

A system that cannot be described by a matrix of this type , is a system with quantum
entanglement.

Recall that a density matrix must obey the following properties: (i) Tr(p) = 1; (i) p = p;
(iii) Positive semi definiteness. (|p|1) >0 for all i) in their space of definition.

1. Show that, for such a separable state, the average value of an arbitrary observable A; of
(2)

subsystem 1 does not depend on subsystem 2. In other words, it does not depend on p,™.
2. Three actors, named A, B, and C (or Alice, Bob, and Charlie), each has a quantum bit (a
quantum system defined in a 2-dimensional Hilbert space with basis {|0), |[1)}). The system
of the three quantum bits is in the state [Ygpz) = %(|OOO) +[111)) (here and throughout,

in the notation |ijk...), index i indicates the state of Alice’s qubit, index j indicates Bob’s
qubit, etc.). Alice lives in another galaxy, and Bob and Charlie have no knowledge of the
total state of the three quantum bits. Calculate the density matrix associated with the
mixed state that describes the subsystem formed by the quantum bits of Bob and Charlie
(in the basis {|00), |01), |10}, |11)}). Show that this matrix is of separable type.

Now, let’s consider the operation of partial transposition (not to be confused with partial
trace). Consider a density matrix p that describes the state of a system composed of two sub-
systems. Let {|i), |7),...} represent the states of the basis of the first subsystem, {|u), |v),...}
represent the states of the basis of the second subsystem, and {|iu), |iv), |ju), |jv),. ..} represent
the states of the basis of the total system. If the matrix p has matrix elements p;, j, = (iu|pljv),
then the matrix elements of the density matrix p’?, obtained by performing partial transposition
with respect to the second subsystem, are defined as (p’?);,,.j, = (iv|p|jp). (Partial transposition
with respect to the first subsystem is defined similarly).
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3. Show that for a separable state of two subsystems, of the form (A.6]), the partial transpose
plP with respect to one of the two subsystems is still a valid density matrix. In other
words, it still satisfies the three properties (i), (ii), and (iii) mentioned above.

Remark: We will thus have demonstrated a necessary condition for a density matrix to
be separable. Automatically, we will have a sufficient condition for a density matrix to be
non-separable, i.e., entangled.

4. Four actors, named A, B, C, and D (or Alice, Bob, Charlie, and David), each have a
quantum bit. The system of the four quantum bits is in the state [¢g) = 1(|0000)+[0011)+
|1100) — |[1111)). As before, Alice lives in another galaxy. Calculate the density matrix
associated with the mixed state that describes the subsystem formed by the quantum bits
of Bob, Charlie, and David (in the basis {|000), |001),|010),..., [111)}). Demonstrate
that the mixed state shared by Bob, Charlie, and David is an entangled state. In this
regard, we will use the criterion just defined.

Suggestion: study the eigenvalues of the partial transpose. Note: there are several ways
to divide a system of three qubits into two subsystems. Remark: if no mistakes are made,
diagonalizations should only be performed in 2-dimensional subspaces.

A.3 2016 Exam

FEzercise 7 : 3 coupled harmonic oscillators (3 points)
Consider the system of three coupled harmonic oscillators, described by the Hamiltonian

3
H = 21 hwjﬁj - %J(d}@k +afa;), (A7)
J= J<

where the second sum is taken over distinct pairs of indices (7, k), i.e., (1,2), (1,3), and (2,3).
We assume that the three oscillators are placed at the vertices of an equilateral triangle. There-
fore, the system is invariant under the operations of the Cs, symmetry group. In particular,
each operation of Cj3, realizes a permutation of the three oscillators. The character table of Cs,
is provided below. We denote states with a non-negative number of quanta on each oscillator
as |n1,n2,n3). These states form an orthonormal basis.

1. Show that the Hamiltonian commutes with the number operator, i.e., [fAI N ] =0, where
N = Z?zl d;dj. Explain what this implies for the eigenstates of H.

2. Now consider the three states [100), [010), and |001). Using group representation theory
and simple symmetry considerations, find the eigenvalues and eigenvectors of H in the
subspace generated by these three vectors. In particular, explain the degeneracies imposed
by symmetry.

3. Consider the subspace of dimension 6 generated by states |ni,n2,ng) with ny + ng + ng =
2. Without explicitly calculating the eigenvalues and eigenvectors of H but only using
representation theory, determine the number of distinct energy levels and their degeneracies
characterizing the eigenstates of H in this subspace.
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T

" Cs | E_2C5 30, |
ryJ 1 1 1
OB 1 1 Suggestion. To calculate the characters associated with the oper-
™[ 2 1 0 ations of Cj3,, it is worth noting that you only need to know the
diagonal elements of the corresponding matrices, and it is sufficient
Table A.1: Character table to perform this calculation once for each equivalence class of the
for Cs, group. Also, it is worth noting that, to solve this problem, the use
of "projectors" onto the irreducible representations of the group is
not necessary.

FEzercise 8 : Entanglement entropy (2 points)
Consider a quantum system in a Hilbert space H; of dimension 2, described by the following
density matrix:

ﬁ:(:g 1?x) 0<x<1 (A.8)

1. Calculate the von Neumann entropy of p, defined as S(p) = -Tr(pIn(p)) = S(x). Study
the behavior of S(z) within its domain. What is the value of S when p is a pure state? For
what value of x does S(z) reach a maximum, and what type of state does it correspond
to?

Now, consider a system composed of two subsystems A and B, as seen in the previous
section. The states of this system are defined in the Hilbert space H = H1 ® Hi. We will now
use the concept of Schmidt decomposition: it can be shown that it is always possible to find
two orthonormal bases {|a1), |a2)} and {|b1), |b2)} in the Hilbert space H;i, allowing an arbitrary
pure state [¢)) € H to be written as:

W)=Y Ajlaj)@[b;), withAjeR, 0<A;<1, and Y, A =1. (A.9)
j=1,2 J=1,2

2. Using the Schmidt decomposition, calculate the reduced density matrices pa = Trp (1) (¢]),
and pp = Tra([){¢])-

3. Calculate S(pa) and S(pp). What is the relationship between these two values? What is
the value of S(p4) if |¢)) is a separable state (i.e., non-entangled)? And if |¢) is a state
with maximum entanglement between the two subsystems?

4. Explain qualitatively (and briefly) why S(p4) is called "entanglement entropy."

FEzercise 9 : Hydrogen atom in cubic potential (1 point)
A hydrogen atom is subjected to a time-independent perturbation described by the potential

Ve
V(r) = a—goxyz, where V > 0 and ap = Bohr radius. (A.10)
B
1. Can V(r) produce, at first-order perturbation, a finite correction to the eigenenergy of the
atom’s 1s level, i.e., the one with the principal quantum number n = 1?7

2. Can V(r) produce, at first-order perturbation, a finite correction to the eigenenergies of
the four levels (2s, 2p) of the atom, i.e., those with n =27

Suggestion. Write V(r) in spherical coordinates. Use the operator L, = —-ihd/0¢ to express
V(r) as a linear combination of spherical tensors.
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A.4 2017 exam

Ezercise 10 : 2-D perturbed harmonic oscillator (2 points)

A two-dimensional harmonic oscillator is described by the Hamiltonian Hy = p L+ émw%Q +
A2
QP% + 1mw2 0% = H, +H Since it is a separable Hamiltonian, the eigenstates are tensor products

of eigenstates of the two harmonic oscillators along xand y: [n,m) = |[n)®|m) = (a“) [0)® (ay) — |0),

where d, = /22 % +z . The corresponding elgenvalues of HO are,

2h 2 h
up to an additive constant, given by Ho|n,m) = hw(n +m)|n,m).

mw »
and a, = /5 y+z

The oscillator is subjected to an external potential V' (&, ) that is invariant under the sym-
metry group of the square, denoted as Dy. The group elements consist of two Cy rotations
around the 2 axis (which is orthogonal to the square), a C rotation around the 2 axis, two C
rotations around the # and ¢ axes, and two C¥ rotations around the two diagonals of the square.
The total Hamiltonian is H = Hy + V (2, 9).

It is noted that the operators a, and a,, under the transformations of Dy, transform like the
coordinates x and y, respectively.

1. Determine if the degeneracy of states |1,0) and |0,1) can be lifted by the perturbation

V(Z,9).

2. Determine if the degeneracy of states |2,0), |1,1), and |0, 2) can be lifted by the perturbation
V(z,9). If yes, specify the residual degeneracy. Suggestion: One of these three states alone
generates a subspace invariant under the operations of Dy.

3. Determine if the degeneracy of states |3,0), |2,1), |1,2), and |0,3) can be lifted by the
perturbation V(Z, ). If yes, specify the residual degeneracy.

| Dy E 204 Cy 205 2CY |

RORE 1 1 1 1 Suggestion: First, determine the explicit transforma-
@ | 1 1 1 -1 1 tion laws of the operators a, and G, under the opera-
1 1 1 1 1 1 tions of D4. This will directly yield the transformation
™ | 1 ] 1 ] 1 laws of the states and, consequently, the representa-
NORED 0 2 0 tions of the group D, associated with them. It is also

worth noting that, to solve this problem, the use of
Table A.2: Character table of Dy group "projectors" onto the irreducible representations of the
group is not essential.

FEzercise 11 : Density matrix purification (2 points)
Consider a spin 1/2, which, in the basis {|+), |-)} of the eigenstates of 3., is in a mixed state
described by the density matrix:
1 ( 5 V3 )

PA= V3 3 (A.11)

8

1. Verify that this matrix satisfies the three properties of density matrices. Suggestion: It
will be useful to find the eigenvalues of matrix (1).
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2. Now, consider a second spin 1/2. We have a system composed of two subsystems, A and
B, given by the first and second spins, respectively. Find an explicit expression for a pure
state [1) = ¥ p-s @ji |7, k) such that pa = Trp([t)(¢]). Suggestion: Tt will be useful to
first find the eigenvectors of the density matrix (1).

3. Is the state [¢) thus found unique? If not, find a second state [¢)') = ¥, r_. Bjx |7, k) such
that pa = Trp([¢') (¢']).

FEzercise 12 : Perturbed harmonic oscillator (2 points)

A harmonic oscillator is described (up to an additive constant) by the Hamiltonian Hy =
hwa'a. The eigenstates of Hy are denoted as |n), where n =0, 1, 2,..., and Hy|n) = nhw|n). At
time t = 0, a perturbation is switched on:

N 0 t<0
V(t):{ Vo ot>0

where V = hy(a? +a?), v € R, and v > 0. We assume that at ¢ < 0, the oscillator is in its ground
state |0).

1. Express, at the first order of time-dependent perturbation theory, the probability Py, (t)
that the oscillator, at ¢ > 0, is in the state |n), with n > 0. For which states |n) does the
probability Py_,(t) have a finite value? What is the limit of Py, (t) as t > +oco?

We will now consider the system described by the Hamiltonian H =Hy+V and study its
fundamental stationary state using the variational principle.

2. Use the variational assumption |0’) = |0) + a|2), where « € R is the parameter to be varied
(note that the state |0') expressed this way is not normalized). Under the assumption that
v < w, calculate the state |0’) that minimizes the average energy value and express this
average value to the lowest order in v/w.

3. Discuss the difference between the result found in point 2 and that obtained in point 1 in
the limit ¢ - +oo0.

Suggestion: In the limit v < w, one would expect that the difference between the states |0)
and |0’) is small, and therefore the solution to the variational problem satisfies the condition
a << 1.

A.5 2018 Exam

FEzercise 13 : 2-Site Ising Model with Transverse Field (2 points)
Consider a model of two interacting spins subjected to a transverse magnetic field. The
system’s Hamiltonian is given by

A

H=-769 06" —n6 o1y -ni 068", (A.12)
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where 6](2) and &](.x) are the Pauli matrices, j = 1,2 for the first and second spin, respectively,

with J >0 and h > 0. Here, I and I, represent the identity operator in the space of the first and

second spins, respectively. We will consider the basis {|-=),[+-),|-+),|++)} of the eigenstates

(2) (2)
1 2 -

of 6;7/ and &

1. Explicitly write the matrix associated with H in this basis.

2. We consider the following variational assumption for the system’s ground state:
[Yo()) =|—=)+ a|+=)+ a|-+) + [++) , (A.13)

with « € R. Note that the state [¢)g(«)) as expressed is not normalized. Using the
variational principle, show that the value of o that minimizes the average energy is

J ‘ J?
S S A4
“m =50 "\ @ne " (A.14)

3. Calculate the average energy Ey over the state |¢g(a)) for o = auy,.

4. Demonstrate that the state found by the variational principle is indeed the exact ground
state of the problem. Why can the exact ground state be described by the assumption
|tho(r)), which contains only one variational parameter?

FEzercise 14 : Entanglement Entropy in the Transverse Ising Model (2 points)
Consider the state of two spins:

|[-=)+ apm [+=) + ap |[-+) + [++)
V2(a2, +1) ’

with ay, given previously. We will apply the concept of entanglement entropy, which provides
a measure of the entanglement between the two spins. Entanglement entropy is defined as
S = -Tr[p1In(p1)], where p1 = Tra[p] is the reduced density operator of the first spin, obtained
by taking the partial trace of the density operator p associated with the state of the two spins.

|¢0(am)> =

(A.15)

1. Explicitly write the matrix associated with the density operator p in the basis {|—-), |[+-=),|-+), |[++)}.
2. Calculate the matrix associated with p;.
3. Calculate S.

4. What is the value of S in the limit J/h - c0o? And in the limit J/h — 07 What conclusions
can be drawn about the entanglement between the two spins in these two limits?

FEzercise 15 : Vibrational Modes of a Triangular Molecule (2 points)
A molecule consists of three identical atoms arranged at the vertices of an equilateral triangle.
We are interested in the normal vibrational modes of the molecule around the equilibrium
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positions of the three atoms. The symmetry group of an equilateral triangle in R? is Dy, and
its character table is provided below. We consider the Z axis oriented perpendicular to the plane
of the triangle. The operations of Dgp include the identity, two C3 rotations around the 2 axis,
three Cs rotations around the three axes connecting each vertex to the midpoint of the opposite
side, the mirror plane o, parallel to the triangle’s plane, two improper rotations S3 resulting
from the C5 rotations followed by o, and three vertical mirrors o, on planes orthogonal to the
triangle’s plane.

Each atom can move independently in R®. Thus, the system has 9 independent degrees of
freedom, which generate a representation I' of dimension 9 for the group Dsy,.

1. Calculate the characters of the representation I'.

2. Determine the decomposition of I' into a direct sum of irreducible representations of Dsy,,
D=0 4. 45T,

3. In this decomposition, which irreducible representations are associated with the translation
of the center of mass?

4. And which irreducible representations are associated with the rigid rotations of the molecule?

5. Which irreducible representations are associated with the proper vibrational modes of the
molecule (i.e., other than the center of mass translation and rotations)? What is the
degeneracy of the corresponding normal vibrational frequencies?

Suggestion: The representation I' can be determined by taking the tensor product between
the representation generated by a displacement vector and the representation associated with
permutations of the three vertices generated by the group’s operations.

’Dgh‘E 203 3Cy o 2853 30’1}‘ ‘ ‘

™1 1 1 1 1 1 a? +y°, 27
r® |1 1 -1 1 1 -1|R,

12 -1 0 2 -1 0] (zy) (2% - y%, 2y)
@[ 1 1 -1 -1 -1

ré [ 1 -1 -1 -1 1]z

re® [ 2 -1 0 -2 1 0| (Rs,Ry) | (22,y2)

Table A.3: Character table for the Ds;, group

A.6 2019 Exam

FEzercise 16 : Harmonic oscillator in an external field (15/50 points)

Consider an isotropic 2-D harmonic oscillator. The oscillator is subjected to an external
potential V(x,y) that is invariant under the symmetry transformations of a pentagon (group
D5, character table below). Therefore, the Hamiltonian is H = Hy + V (x,y), where

Hy=-—— L+ 2 )42 . Al
0 2m(8x2+8y2)+2mw (z7+y7) (A.16)

129



Quantum Physics 11 APPENDIX A. EXERCISES

The eigenstates of Hy will be denoted as |ng,n,), where n, and n, are the numbers of quanta
in each direction of the oscillations. The corresponding eigenenergies are Ey = Nhw, with
N =ng +ny.

Consider V(z,y) as a time-independent perturbation.

1. Using group representation theory, determine if the energy degeneracy of states with IV =1
is lifted by V' (x,y) at the first-order perturbation. If so, how is it lifted?

2. Same question, for states with IV = 2.
3. Same question, for states with N = 3.

It is recalled that the eigenstates of the 2-D harmonic oscillator can be constructed from
those of the 1-D harmonic oscillator, which are

1
1 mw\i _mwz? [mw
wn(x): \/W(ﬁ) e 2h Hn( TZ’) , n=0,1,2,...

In particular, we have Hy(z) = 2z, Ha(x) = 42° - 2, and H3(z) = 823 - 122.

[Ds [E 2G5 2(C5)> 505 | | \
A1 1 1 1 22 +92, 22
Ay |1 1 1 -1 |z R, 23, 2(2% + %)
Ei |2 2cos (%’r) 2 cos (4?”) 0 (z,y) (Re, Ry) | (z2, yz) (z22, y2?) [2(2? +9?), y(2® + )]
By |2 2cos(X) 2cos(Z) 0 (2 —y°, wy) | [wyz, 2(2” - )] [y(B2” - ¢, w(a® - 3y°)]

Table A.4: Character table of the D5 group

FEzercise 17 : Entropy of a quantum system (15/50 points)

The state of a quantum system is described by a density operator p. The Von Neumann
entropy is defined as S = =Tr(p1n p) (note that this involves the logarithm of an operator!). The
entropy measures the extent to which the state is a statistical mixture.

1. What is the value of S for a pure state p = [¢) (¢|?

2. Show that if the density operator evolves in time according to the Von Neumann equation
dp
dt

the entropy S(t) remains constant over time.

_i[ﬁa :6] 3

3. Now consider a spin 1/2 system. It is assumed that the interaction with the environment
results in a time evolution governed by the equation

o _
dt
where 7 = (I+6,)/2 and H = wé,. If at ¢ = 0, in the basis {|o. = +1), |0, = —1)} of the

eigenstates of G,
p= ( ,011 P12
P12 P22

~i[H,p] - % (2% + pn2 - 2pn) |

calculate the matrix p(t) at time ¢.
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4. For the same spin 1/2 system, it is now assumed that at ¢ = 0, the system is in the pure
state |1) = (|[+1)+]-1))/+/2. Calculate the entropy S(t) as a function of time. What is the
value of S(t) in the limit £ - co?

FEzercise 18 : Perturbed Harmonic Oscillator (20/50 points)

The motion of a particle with mass m in one dimension is governed by the Hamiltonian

with A > 0. This problem can be considered as a perturbation of the harmonic oscillator, with

H = Hy+V where
R dz 1 4,
0= ———— + —w"e
2mdz? 2

V(z) = %mw2x2 (e>‘w2 - 1) .

Recall that the wave function of the ground state of the harmonic oscillator is 1g(x) =
1 B 12
(%)4 e” "2 where Bo = 3%. For the solution of this problem, we assume A < 3,3p. Also,

remember that for Gaussian integrals, we have [ dx e B = V7/B and [77 dr x2e7P2” =

(1/2)\/=/B°.

1. Calculate the energy of the ground state to first order in the perturbation V' (x).

2. Calculate the energy of the ground state, this time using the variational principle. Use the
normalized trial wave function for the ground state

Bz?

w()= () et

with £ > 0.

A.7 2015 Midterm

Ezercise 19 : Confined Quantum Stark Effect (2.5 points)  Consider an electron with
mass m in a one-dimensional potential well of width L, with infinite barriers located at x = £L/2,
described by the Hamiltonian Hy. A constant electric field of intensity F is applied to the system,
subjecting the electron to the Coulomb force F' = —eF, resulting in a perturbation V = Fé.

1. Schematically represent the total potential experienced by the electron for £ > 0.

2. Provide the Hamiltonian Hy. Recall the eigenenergies E, and wave functions ¢, (z) (n =
1,2,...) of the unperturbed electron, i.e., when F' = 0, distinguishing between even and
odd values of n.

3. In the case where F' # 0, calculate the first-order energy correction E;l) of the ground
state. What do you observe?
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4. Deduce the first-order energy corrections of excited states E7(11) with n > 1.

5. Now, calculate the second-order energy correction E§2) of the ground state (exploit the
parity of wave functions). For the sums over intermediate states, restrict to only states
p1(z) and p2(x), and indicate V51 as the matrix element of the perturbation, calculated
between these two states.

6. Intuitively and qualitatively represent the shape of the wave function for the ground state
in the total potential.

Ezercise 20 : Interacting Particles in a Potential Well (2.5 points)  Consider 2 indistin-
guishable particles (without spin) with mass m confined in a square one-dimensional potential
well V(x). Assume that the height of the barriers is such that only states associated with wave
functions ¢ (x) and () are confined in the well. The Hamiltonian of the system is given by

HO = [, + H,, (A.17)

with
o) o)

=2 vz, =22 v v(a,). (A.18)
2m 2m

1. Suppose that the two-particle states are even under permutations. Determine a basis of
two-particle states, considering 2 particles from 1 and ¢o.

2. Now, suppose that the particles can interact when they are precisely at the same location
(contact interaction), which is represented by the perturbation Vint = Vod(21 — 22), where
d(&1 — 22) is the Dirac delta function. Calculate the first-order energy correction for each
of the previously established two-particle states. Discuss the relative values and signs of
these corrections.

3. Repeat the previous calculations in the case where the two-particle states are odd under
permutations. Compare the results obtained with the symmetric case and draw conclu-
sions.

Ezercise 21 : Quantum Information (1 point)
Alice sends Bob a large number of qubits. These qubits are prepared as follows:

e Alice flips a coin.

o She uses an "instruction manual” (the same for all qubits) that states that if she gets
"heads," Alice sends a qubit in the state |t),), and if she gets "tails," she sends a qubit in
the state [t)).

Bob must understand which instruction manual Alice is using. At the beginning of the
process, Alice chooses one of the three instruction manuals, A, B, C:

A ) =10)  Jp)=11)

B |wp>=%<|o>+|1>> |wf>=%
1

C : [gp)=10) |¢f>=\/§(|0>+i|1>)
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Is it possible for Bob to guess which instruction manual Alice is using? Why?

Suggestion: For each instruction manual, Alice is producing a statistical mixture of states.
Establish the corresponding density matrix for each instruction manual.

A.8 2016 Midterm

FEzercise 22 : Impurity in a crystal field (3 points)

Consider an atom with an electron in a state of the 3d orbital (i.e., with angular momentum
L =2, which means the orbital is fivefold degenerate). We will neglect the electron’s spin. The
atom is placed as an impurity in a crystal that is invariant under the symmetry operations of
the Ty symmetry group (the symmetries of a tetrahedron). We can approximate the rest of
the electrons in the atom and its nucleus as if they form a simple positively charged nucleus.
Therefore, we associate one of the wave functions of the hydrogen atom with n =3 and L = 2
with the electron in the 3d orbital. The electron is influenced by the electrostatic field produced
by the surrounding crystal. The Hamiltonian of the system is thus H = Hy+V, where Hy is the
Hamiltonian that gives rise to the 3d levels of the atom in the absence of the crystal field, and
V is the effect of the crystal field.

1. Using group representation theory and time-independent perturbation theory (degenerate
case), determine how the degeneracy of the 5 3d states is lifted. More precisely, determine
(i) how many distinct energy eigenvalues will result from the perturbation, and (ii) how
many times they are degenerate.

2. Consider electric dipole transitions between the degenerate levels that have been found.
Determine the selection rules for these transitions.

3. The wave functions associated with 3d-type states are even under spatial inversion. Discuss
whether the transitions seen in the previous point are allowed by parity or not. Note that
the Ty group does not include inversion among its elements.

’ Ty ‘ E 8C53 3Cy 605 654 H Fcts linéaires ‘ Fcts quadratiques ‘
rl 1 1 11 1 22 +y?+ 22
™1 1 1 -1 -1
2 -1 2 0 0 (222 - 2% — %, 2% - )
™13 0o -1 -1 1| (RsR,R.)
r® | 3 0 -1 1 -1 (z,y,2) (yz,xz,zy)

Table A.5: Character table for the Ty group

Recall that

o For the group SO(3), all rotations of the same angle o belong to the same equivalence
class. To determine the character of a rotation by an angle o around any axis, you can
simply calculate the character of a rotation by an angle a around the Z axis, for which the
matrices of the irreducible representations are diagonal and known.
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e The operation o4 in T} is a mirror operation, thus a rotation by « = 7 followed by inversion.
The operation Sy in T, is an improper rotation, hence a rotation by « = 7/2 followed by
inversion.

e The wave functions of the 3d orbital are even under inversion. The matrix associated with
inversion, for all representations generated by these states, is therefore the identity.

FEzercise 23 : Perturbed 2-D Harmonic Oscillator (3 points)
We will consider the isotropic two-dimensional harmonic oscillator. The Hamiltonian is given
by

D A2
N 1 1
g = Py iy Py + —mw’§?
2m 2 2m 2
= Hy(2)+ H1(9)
where
o)
\ 1
Hy(2) = Pz | 20232
2m 2

is the Hamiltonian of the one-dimensional harmonic oscillator.

As it is a separable Hamiltonian, the eigenstates of H are Ynm(z,y) = ¢n(x)dm(y), where
¢n(z) are the eigenstates of Hi(2) with eigenenergy €, = Aw(n+1/2) and n=0,1,2,.... Thus,
we have HYpym = Enmtnm with Enp = €, + €.

We introduce a small perturbation V = AZY.

1. What is the lowest order of perturbation for which there exists a non-zero correction to
the energy Eqo of the ground state of H+V? Provide a rigorous argument for your answer.

2. What is the lowest order of perturbation for which there exists a non-zero correction to the
energies Fy; and Fg of the first two excited states? Provide a rigorous argument for your
answer. Calculate the new energies resulting from this order of perturbation. Calculate
the eigenstates associated with the obtained energies. To what order in V do these new
eigenstates differ from the initial states?

We recall that, for the one-dimensional harmonic oscillator, we have

o = () e
¢1(x) = V2azgo(x)

with « = mw/h and
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A.9 2017 Midterm

FEzercise 24 : Attractive 1-D Potential Always Has 1 Bound State (2 points)

Consider the problem of a particle in one dimension, defined by the Hamiltonian H =
—%%Jrf/(x). The potential V(z) takes the form of a well, i.e., V(2) <0 V& e R, and V(z) - 0
as |z| - oo. Use the variational principle and the wave function (z|¢)) = 1(z) = Aexp(-Az?),
which depends on the variational parameter A > 0, to show that there is always at least one

bound eigenstate, i.e., with eigenenergy Fy < 0. In particular,

1. Calculate the normalization factor A.
2. Caleulate ([T (x)[) = (] (-2 5 ) [0)-

3. We denote I(\) = (¢[V(2)[). So (|H|p) = (|T(x)[y) + I(N). Explicitly write the
condition that minimizes the expectation of energy (¢|H|¢). Use the resulting relation to
derive an expression for ()). Use this result in the expression for (1)|H|t) and demonstrate
that we always have (¢|H) < 0.

Recall that f_+O:° dxexp(—x?) = /7. Use change of variables and integration by parts to derive
all necessary integrals for the resolution of this exercise.

FEzercise 25 : Symmetry of Second-Degree Polynomials in R3 (2 points)

Consider six functions 9;(r), with r = (z,y,2) € R® and j = 1,2,3,4,5,6, defined as follows:
1 = 22, 4Py = y?, b3 = 22, Wy = 2y, s = 12, g = yz. (Note: these functions are orthogonal but
not normalized. Their norm can be neglected for the rest of this exercise). Under rotations in
3D space R3, these functions generate a representation D of SO(3).

1. Calculate, for this space, the matrix associated with the rotation by an angle ¢ around
the z axis.

2. Using the characters, prove that D = D(®) @ D) where D® are the irreducible represen-
tations of SO(3). For this, it will be helpful to calculate the characters x() (¢) associated
with the irreducible representations D). Recall that all rotations by the same angle ¢
around any axis belong to the same conjugacy class of the group SO(3).

3. Determine the linear combination of ¢;(r) that generates the irreducible representation
DO,

4. Now, assume that the symmetry group is smaller than SO(3) (for example, due to the
introduction of a perturbation). In particular, suppose that the new symmetry group is
C3y. Determine the decomposition of D as a direct sum of irreducible representations of

Csy.

| Csy | E 2C3 30y |
rdJ 1 1 1
r®J 1 1 -1
r®[ 2 -1 0
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Ezercise 26 : Harmonic Oscillator Subjected to a Pulsed Perturbation (2 points)

A harmonic oscillator, characterized by the Hamiltonian Hy = hwata, is subjected to a
perturbation in the form of a Gaussian pulse in time: V(t) = £Zexp(~t?/72), where 7 > 0
measures the duration of the pulse, and Z = \/h/(2mw)(a+a'). At t - —oo, the system is in the
ground state |0) of H.

1. Calculate, to the first order of perturbation in V, the probability that the system is in the
state |1) = a'|0) for t — +oo.

2. Discuss the limits wt — oo and wt — 0 of the probability you found. What is the probability
in these two limits? For what physical reason? Determine the duration 7, that maximizes
the probability found in point 1.

3. What is the lowest order of perturbation in 1% required to have a finite probability of being
in the state |n), with n > 1, for t > +00?

A.10 2018 Midterm

FEzercise 27 : Lifting Degeneracy in the Presence of an External Field (3 points)
Consider the 5-dimensional space with a basis of spherical harmonics Y;"(¢,¢) where [ = 2.
This space defines the irreducible representation Dy of the group SO(3).

1. Write, in the given basis, the transformation matrix corresponding to a rotation by an
angle o around the z axis.

2. Calculate the character x(«) of the representation D for a rotation by an angle a around
sin(l+1/2)a. Why does this result

an arbitrary axis n and show that it is given by x(a) = —/ = e

not depend on the axis n?

Imagine an electron in an atom with angular momentum L = 2 (neglecting its spin degree of
freedom), described by a state in the above-mentioned space. The corresponding energy level
is necessarily 5-fold degenerate due to the SO(3) symmetry. An external potential V(r) is
introduced, which is invariant under the symmetry group Oj, of a cube (character table at the
end of the statement). Note that an operation denoted by C,, is a rotation by an angle 27 /n;
an operation o or oy is a mirror operation, equivalent to a Cy rotation followed by inversion;
an operation S, is a rotation by 27/n followed by a mirror operation with respect to the plane
orthogonal to the rotation; E and ¢ represent identity and inversion, respectively.

1. Calculate the characters of the representation Dy associated with the operations of the Oy,
group.

2. With respect to the new symmetry group Oy, is the representation Dy reducible? If yes,
provide its decomposition into irreducible representations of the Oy group. What is the
consequence on the degeneracy of the electron’s energy levels?

FEzercise 28 : Two Fermions in a Potential Well (3 points)
Consider two identical fermions with mass m and spin s = 1/2, subject to a potential well of
width L with infinite barriers. The potential of the well is 0 inside.
To start, we assume that the two particles do not interact with each other.
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1. Provide the wave function of the ground state of the two-particle system (including the
spin part). What is the energy of the ground state?

2. What is the energy of the first excited level? What is its degeneracy? Write the wave
functions of the states corresponding to this level.

3. What is the energy of the second excited level? What is its degeneracy? Write the wave
functions of the states corresponding to this level.

Now, we assume that the two particles interact with each other through a potential V' (x1,x2) =
Voo (z1 — x2).

1. Provide the correction to the energy of the ground state, to the lowest order in V57 (You
can leave this expression in its integral form).

2. Provide the correction to the energy of the first excited level, to the lowest order in V5?
(You can leave this expression in its integral form). Is the degeneracy lifted? If so, what
is the new degeneracy?

E|8C3|6C,|6C4|3C, =(C,)?| i |6S4|8Sg 30, |60 rcllitl:;?:;ls quadratic
Agll) 1] 1|1 R ERERE xPyPHz?
Aggl1| 1 |11 1 111 ]a
Eg|2|-1]0]0 2 [2/0]1]2]0 2%y, x2y?)
Ty 3| 0| -1 1 4 [3/1]0/|-1]-1|R.R.R)

T3/ 0|1 1| -1 [3]afo|-1]1 (xz, yz, xy)
Al 1] 1|1 1 [alafalala

Apf1] 1|11 EIEEEIERE

E,[2[-1]0]0 2 [2/o0]1]2]0

T3 0] -1]1 a4 |3lafol1]1] xy2

Toul3/ 01 1] - [3[1]0]1]a

Figure A.1: Character table of the Oy group

A.11 2019 Midterm

FEzercise 29 : Four Coupled Harmonic Oscillators (3 points)
Consider a system of four coupled harmonic oscillators described by the Hamiltonian

4
A=Y hwala; - Y J(alay +afa,) (A.19)
J=1 (J:k)

where the second sum is performed over pairs of adjacent values (j, k), i.e., (1,2), (2,3), (3,4),
and (4,1). It is assumed that the four oscillators are placed at the vertices of a square. The
system is thus invariant under the operations of the symmetry group Dy4. In particular, each
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operation of D4 performs a permutation of the four oscillators. The character table of Dy is
given below. The states |ni,ng,n3,n4) are indicated, representing states with a number n; > 0
of quanta on each oscillator. These states form an orthonormal basis.

1. Show that the Hamiltonian commutes with the number operator, i.e., [IEI N ] =0, where
N = Z?ZI d;r.&j. Explain what this implies for the eigenstates of H.

2. Now consider the four states [1000), |0100), |0010), and |0001). Using group representation
theory and simple symmetry considerations, find the eigenvalues and eigenvectors of H
in the subspace generated by these four vectors. In particular, specify the degeneracies
imposed by symmetry.

3. Consider the subspace of dimension 10 generated by states |ni,ng2,ng,n4) with ny + ng +
nz+nyg = 2. Without explicitly calculating the eigenvalues and eigenvectors of H but solely
using group representation theory, determine the number of distinct energy levels and their
degeneracies characterizing the eigenstates of H in this subspace.

| Dy | E 20y Cy 203 2CY |

A | 1 1 1 1 1
A | 1 1 1 -1 -1
B |1 -1 1 1 -1
By | 1 -1 1 -1 1
E 2 0 -2 0

Character table of the D4 group. Rotations C4 and C5 are around the orthogonal axis of the square. The C4 are

around the medians. The C3 are around the diagonals.

Suggestion. To calculate the characters associated with the operations of Dy, it is worth noting
that you only need to know the diagonal elements of the corresponding matrices, and you need
to perform this calculation only once for each equivalence class of the group. It’s also worth
noticing that, to solve this problem, the use of "projectors" on the irreducible representations of
the group is not necessary.

FEzercise 30 : Variational Principle for Two Spin 1/2 Particles (3 points)
Consider a system composed of two spin 1/2 particles. These two spins interact with each other
and an external field according to the Hamiltonian

I:I = I;[cl + I:Iext
Hy =660

Hew =h (657 +657)  h20

We will use the basis of the eigenstates of &52) and &éz): {lo1,02)}, with o1, 00 = £1. The

Hamiltonian flcl is diagonal in this basis, and its diagonal matrix elements can be denoted as
Hy(o1,02).
Consider the variational state

Y(o1,02) = (01, 02[1)
=exp(-BHy(o1,02)) B20
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1. Write the equations dictated by the variational principle for the ground state of the prob-
lem.

2. Solve these equations (graphically?) to find the value of 5 that minimizes the energy of
the ground state.

3. Calculate the variational energy and the associated ground state in the limit h - 0. How
does this result compare with the exact result in this limit?
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Solutions

B.1 2014 Exam

FEzercise 1 : 2 Photon transition

1. The translation amplitude a;.f(t) of a state |i) towards state |f) under the effect of a

branched perturbation from tg =0 to ¢ is given by
ai g () = (f1U1(2,0)]i),

with

Ur(t,to) = 11+Z( )/dtlf dty-- /0 dt, Vi (1) Vi (t2)--Vi(tn)

to

V}(t) _ ezHot/hV(t) e—zH()t/h‘

At first perturbation order, the transition amplitude from |1) to |2) is written

(B.1)

aD) =" f dt (2| Tt/ (¢, )eiHotr /b1y = f dtrei @Dt (97 (1)[1),  (B.4)

where w; = E;/h. Examining the form of V' (£), we note that term @ lowers between levels,

while o' causes an increase. Notably, we have V(¢)[1) = hQe " |2), from where

a12) (w,t) = -2 [ dt1e' (o™ ”)tl Wp = Wy — w1. (B.5)
For w + wqg, we get
ilwo-w)t 1 _2iQ) —w)t
ag)(w,t) = —iQel = B2 pilwo-w)t/2 g —(wo w) , (B.6)
i(wo-—w)  wo-—w 2
and for w = wy, integration gives a%)(wg,t) = —iQ)t. Finally, we get for the transition
probability
2
(1) (1) o A o (wo-w)t
Py (w,t) =layy (w,t)|” = (@0 —)? sin 5 (B.7)

with continuous extension in w = wy giving Pl(g)(OJo, t) = Q%2 = |a1 (wo,t)]2.
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2. We have

P1(21)(wat) _ _ _wn 2 *
By e ot et (50). (B.35)

In other words, the ratio has the shape of a sinc whose value in wyg —w = x = 0 is always
1 and whose pulsation, given by a = 1/t, tends to zero in the limit ¢ - oo. This shows

that the function who at w associates 1’31(21 )(w,t) is shrply peaked around the resonnance
frequency wqg for long times.

3. Since (3|V(¢1)[1) = 0 for all time ¢;, we have
it , .
aff )= = [Cdnemen @) = o, (B.9)

and the transition probability Pl(g)(w,t) = |a%) (w,t)|? is thus zero. to obtain the first
nonzero probability at transtion probability P13, we need at least perturbation order 2.

4. The use of expressions (B.1]) and (B.3]) at second order, imply
1t t A . . R s
a1y (w,t) =~ fo dt, fo " dto(3le Tt () iHo (it (1)) iflota/by1y (B 10)
Since
V(ta) [1) = hQe ™2 2) (B.11)
V(t1)|2) = hQe™ 1) + hQ e ™t [3) (B.12)
We get
t t . 4 . . 4
CL%) (w,t) _ —QQI j(; dtl \/0 1 dtQCletl ef’LwtlefZWQ(tlftz)eflwtgeflwltg
t L, t .
00t [ [" it B13)
0 0
For w distinct from wy and w(, integration gives
(2) _ _Q—Q, ft i(wh-w)tr [ i(wo—w)ts
a5 (w,t) = =) Jo dtye"\~o (e 1)

B O’ (ei(w0+w6—2w)t -1 ei(wé—w)t _ 1)

(B.14)

wo—w \ wo+w)—2w W —w

Which is the result we asked for.

To analyze the pulsation dependence of Pg )(w,t) at long time, we note that the formula
given can be written

) _ (QQ)*? B Q)% -
P13 (wﬂt) - (W6—W)(WO+W6—2(U)f1/t(wo w)+ (wo_w)(w0+w6_2w)f1/t(w0 w)
(QQ)2t2 wo + Wh
G (M) (19

That is to say, as the sum of 3 sinc square (filter function) centered in wy, w) and (wp +
w()/2, of typical respective width 1/¢, 1/t and 1/(2t), and of max value (at the origine)
respectively P,/4, Pp/4 and P,,, where P, = P, (t) = 4929’2t2/(w6 —wp)?. In the long
time limit, we get a function of w sharply peaked around the 3 resonance pulsations, with
3 well separated peaks at t > 1/|w{, — wo|. For w{ = 0.6wp, this figure shows the behavior:
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PR/ Pul®)
1.2+

1ol

0,8: — wot =10
06l — wot =80
— wot =640

04]

0.2

To examine ]31(22 )(w,t), we revisit the expressions (IB.lOI) to (IB.12I) by replacing the bra

corresponding to the final state (3| with (2|, which results in ]31(22 ) (w,t) = 0. Indeed, one
cannot transition from |1) to |2) through a second-order process because each of the two
applications of V either raises (07) or lowers (9) the energy level; starting from |1), the
probabilities lead to either |1) or |3) (in fact, a superposition of |1) and |3)), but not to |2).

5. The absorption probability is given by Pus(w,t) = Pia(w,t) + Pig(w,t) =~ Pl(Ql)(w,t) +
Pg )(w,t) up to the second order of perturbation. By including the processes of the 1st
(®) and the 2nd (@) order, we obtain the absorption line spectrum as follows:

©: 1)~ [2)
&
1)~ [3)
@: 1) > [3)
@: 1)~ [3)
1 x w

where the height of the lines symbolizes the absorption efficiency; the lines for second-order
processes are smaller than those for first-order processes since, by assumption, we are in a
perturbative regime, so  and ' are small, and Pm(t)/Pl(Ql)(wo,t) =407/ (wh - wo)? < 1.

6. The last of the three terms in equation (3) of the statement corresponds to a resonance
2hw = th + hw6 = E3 - F (B.lﬁ)

in the excitation process of atoms |1) and |3). This resonance, therefore, corresponds to a
situation where the energy of two photons exactly matches the energy difference between
the initial and final states. This implies that it is a two-photon excitation process (two
photons are absorbed in the electromagnetic field to excite the atom from [1) to |3)), which
aligns intuitively with it being a second-order process (in this interpretation, the operator
e @tHt corresponds to the absorption/annihilation of a photon and the simultaneous ex-
citation of the atom, and it must be applied twice to go from |1) to |3)). This two-photon
process would have the following representation:
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13)

!/ ’
2) Mw” o hw = A=

huo ]«v hw = h%wé
1)

It can be seen that the two-photon process conserves energy "globally" since the combined
energy of the two photons allows for the difference between the initial and final states to be
bridged. Nevertheless, it can be observed that energy is not conserved in the "individual
underlying processes, namely, the absorption of a "first" photon that transitions the atom
from |1) to |2), and then the absorption of a "second" photon that transitions the atom
from |2) to |3).

Note 1 (not requested): In reality, the fact that the transfer from [1) to |3) is not sequential
(coupling [1) — |2), waiting time of a similar duration, coupling |2) - |3)) allows for the
energy difference between the dashed line and the level Es.

Note 2 (not requested): The first two terms of equation (3) in the statement (resonances at
wp and wy)) correspond to processes that do not globally conserve energy (2hwg # E3 — E1,
2hw( # E3 — E1); they result from the abrupt, step-like branching of the perturbation at
t = 0. This type of branching does not have an "adiabatic" limit when tending to infinity,
and, therefore, there is no energy conservation. For any other type of branching that
has an adiabatic limit (for example, a linear ramp between 0 and ¢, with a given average
amplitude over this interval, which becomes infinitely slow as ¢ — +o00),these processes
would become negligible in the limit of long times, and the peaks at wy and w(, would
disappear from the spectrum above. Nevertheless, it is observed that these terms, which
violate the overall conservation of energy corresponding to a favored |1) - |2) — |3) transfer
due to the resonant nature of |1) — |2) at the frequency wp (even if |2) - |3) is not resonant
at that time) or |2) — |3) at the frequency wy.

FExercise 2 : Fine structure of an atom

1. The values of j range from |l — s| to [ + s. In other words, for [ = 0, the only possible value
is j =1/2. For [ >, there are two possible values: j =1-1/2 and j =1+ 1/2. Regardless of
J, the corresponding values of m; are —j,-7+1,...,5-1,7.

2. The components of L commute with those of § (one acts on the spatial degree of freedom

of the electron, the other on the spin degree of freedom), so J’ = (L+5)%= L*+2L.5+ 8%
Hence,

5= % (°-i°-8%). (B.17)

To calculate the commutators with H , it is first noticed that all components of L and
S commute with Hy and operators that depend only on r, such as A(r). Therefore, for

N A2 A2 A2 A N N
operators O=J L ,S ,J,,L.,S,, we have

[0,H]=[0,Hy]+[0,A(r)L.S8] = A(r)[O, L.S] (B.18)
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It is then established that

(1% 1.8]=[L% 1,18, + [L° 1,9, + [L°,1.]5. = 0 (B.19)
(8%, 1.8] =[5, 8,100 +[8°,8,]L, +[8°,8.1L. =0 (B.20)
(7% 1.8]=[L%,L.8]+[8°,L.8]+2[L.5,1.5]=0 (B.21)

and that
[L.,L.8)=[L.,L;15: +[L.,L,1S, = ih(L,S: — L.S,) (B.22)
[S.,L.8]=[5.,8:]Ls +[S.,8,1Ly = ih(L.S, - L,S,) (B.23)
[J.,L.8]=[L.,L.8]+[S.,L.8]=0. (B.24)

22 22 a2 A A
We have thus shown that S°, L, J , and J, commute with the perturbation A(r)L.S
and the complete Hamiltonian H. However, the components (projections) of L and S do
not commute with L.S and H and, therefore, do not correspond to conserved quantities.

3. By assumption (by construction), the states |nlsjm;) are eigenstates of fLQ, S’z, and J~ with
the respective eigenvalues h21(1+1), h?s(s+1), and A%j(j+1). Due to the identity ,
they are also eigenvectors of L.S (with eigenvalues %hQ [J(G+1)=-1(l+1)-s(s+1)]). The
quantum number n indicates that [nlsjm; ) are solutions of the radial Schrédinger equation
(depending only on [ and ) for the hydrogen atom. These solutions are not eigenstates of
the operator A(r) (equivalent to a 1/r3 term), and therefore, [nlsjm;) are not eigenstates
of Vg = A(r)L.S. From the above results, it follows that the matrix elements of Vg are

: - . h?.
(n'l'sj'my|Viglnlsjm) = (Rn/l|A(’F)|Rnl)?|:](j +1) =11 +1) = s(s+1)]01,0:65,5 Oy om0

(B.25)
where |R,;), n > 1+ 1, represents the radial wave functions of the usual hydrogen atom.

4. The eigenstates of Hy are degenerate since their energy depends only on n. We must
employ degenerate perturbation theory. At the first order, the perturbation only mixes
states within the same degenerate subspace n, and the energy corrections (energy shifts)
are given by the eigenvalues of the matrix

MY = ((nl’sj'm;-|VLg|nlsjmj)) (B.26)

Vi'mgrlgm;

The considerations from the previous question, summarized in Eq. (B.25]), show that this
matrix is diagonal, with diagonal elements given by
. h?
(nlsjm|Visinlsjm) = (Rul A(r)|Rn) 7 [7 (5 +1) = 1T+ 1) = s(s + 1)]. (B.27)

The eigenstates remain unchanged at the first order of perturbation, but the eigenenergies
experience a shift AE = AE,;; given by these diagonal elements (the dependence on s is
not indicated as s = 1/2 is fixed):

Ay = (nlsjmj|Vis|nlsjm). (B.28)
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(i)

(iii)

At first-order perturbation, due to degeneracy, everything happens as if the |nlsjm)
states were eigenstates of Vi g. For the s states (I = 0), only the case j = 1/2 = s exists,
and we have

AE,;=AE, 41 =0, (B.29)
2
For 1> 1, we have j =1+ 1/2 or j =1-1/2, and the expression (B.27) yields
h? l if j=1+1/2
AETL, i>1,5 = <Rnl|A(T)|Rnl>? X { —(l + 1) ifj=1- 1/2 . (B30)

The L.S coupling partially lifts the degeneracy of each level n by creating, at the
first-order perturbation, sub-levels whose energy depends on [ (infinitely many values)
and j (two values for each j value), but not on m;. This division into sub-levels is
called fine structure.

For [ = 1, the possible values of j are j = 3/2 and j = 1/2, denoted as 2Py 5 and 2P,

respectively. These levels are degenerate in the absence of Vis, and their shifts due
to Vi g are

h? 1

A2,173/2 = +7<R2’1’A(T)|R271> = %044777,602 (B.31)
1

A2’1’1/2 = —h2<R271|A(T)|R2,1> = —Ea4mec2. (B32)

Numerical application (with the oral indication that we will use o ~ 1/137 to simplify
the calculations):

1 11-3.00

—atmec® = 9-11:3.00% 125 8—0410‘25 =2.107%7, (B.33)
96 0.96-1.374 V2

where we rounded down a bit. To convert results between units, we use 1J = (1/1.60)-
10" eV and Planck’s constant h = 27h = 6.63 - 1073* J.s, which allows us to express
an energy E in terms of the corresponding frequency v = E/h. We can quickly find
rough estimates:

Agiap=2-107J~1-10"eV ~3GHz x h~ 20 GHz x h (B.34)
Agyijp=—4-107"J~-2-107eV ~ -6 GHz x h ~ ~40 GHz x h, (B.35)
and a degeneracy lifting of the order of 3-107°eV (more precisely 4.55-107°eV), or

about ten GHzxh (more precisely 11.0 GHz x h).

There is still residual degeneracy of states with different m; (m; = —j,—j+1,...,7-1,7)
for each given level (n,l,j) of the fine structure. The fine level 2Py, is four-fold
degenerate (m; = -3/2,-1/2,1/2,3/2), while the fine level 2P j, is two-fold degenerate
(mj = —1/2,1/2).

Exercise 3 : Time evolution of a density matrix

1. In basis B = {|t1),[14),[11), [11)}, The matrix H is given by

0 00
0
0
0

[H]g = gh? (B.36)

S = O
o O =
o O O O
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2.

The matrix of H is block diagonal. Tts eigenvalues are 0 (twice degenerate) and +gh? (the
latter two are obtained by diagonalizing the central block). The corresponding eigenvectors

are [11),|{!) (for the eigenvalue 0), v, = %(|N)+ [41)) (for +gh2), and v_ = %(HL) -[1)
(for —gh?).

At t=0,|[¥(0))=I1)= %(m —v_), hence

T()) = e [T(0)) = %[e-ightm — ety ] = cos(ght) |41) - isin(ght) [1)).  (B.37)

The density matrix is defined as p(t) = [¥(¢))(V(¢)|. The matrix p(t) in the basis B is
given by

0 0 0
sin?(ght)  —3isin(2ght) 0
%i sin(2ght)  cos’(ght) O]

0 0 0

o(t) = (B.38)

o O O O

. The reduced density matrix p;(¢) obtained by taking the partial trace over the states of

the second spin, and expressed in the basis {|{),|1)} of the first spin, is:

2
m(t>=(C°S (o) sin2?gm))- (B.39)
We have
p1<0)=(§) 8). (B.40)

This matrix corresponds to a pure state. At time ¢ = the reduced density matrix

becomes

T
4gh?

p1 (4th) = (1(/)2 172). (B.41)

It corresponds in this case to a mixed state. This is due to the interaction between the
2 spins, modeled by H, the 2 spin systems, initially in a separable state evolved, to find

itself at ¢ = 7~ in an entangled state.
g

B.2 2015 Exam

FEzercise 4 : Hamrmonic oscillator suddenly displaced(2 points)

1.

After displacement, the system Hamiltonian becomes

)
N 1
a=2 “mw? (& - b)?
2m 2
P 1
= 2+ Zmw?2? + —mw?b? - mw?bi
2m 2
= If.ro + V (t)

with V' (¢) = mw?b?/2 — mw?bi, constant for ¢ > 0. Furthermore, & = \/h/2mw (a"+a).
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2. We can directly apply the Fermi golden rule for a constant perturbation V, that is
2w N 2
Wiy = F‘W\ VD6 (En - Er) (B.42)

where the eigen energies are E,, = hw (n +1/2). Note that if n # 1, then w, # w; and thus

(B.42) is identically zero.

3. The perturbation lasts for finite time 7' the fermi golden rule, useful in the approximation
of a long perturbation, can no longer be applied. The transition probability at ¢ is

Pron = [(n | 0 (8))?
= |(n] Us (+,0) [1)|*

- [{nl e (1,0) 1)
= [{n] e B0 (1,0) 1)
= |(nl 07 (£, 0) )]

where indices S and I refer to the Schroedinger representation and interaction respectively.
At first order in V' we have

T
ﬁ;(t,O):ﬂ—%fdt’VI ()
0

T
_%fdt/eiﬁot’/hf/] (t/)e—iﬁot’/h

The term in 1 does not contribute to the matrix element, as (n|1|1) = 0 and similarly for
the term in 4% in V. We then have

(0] O (£,0) 1) = (n] 0¥ /M0 () €100/ 1

T
- [are BEE )

We note that having V o al +a, the only states for which n = 0 and n = 2 will have a
nonzero transition probability. We compute

T
/ At e~ (BBt [h _ _ ( —i(E1-En)t'/h _ 1)

E1 - En
h
(n|V[1) = =mw?b al+all)
2mw
h
(0| V1) = ~mw?by [ ——
2mw
h
(2] V[1) = —mw?by [ —
mw

and finally
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FEzercise 5 : Variational principle for an anharmonic potential (1 point)

1. Being given by V(z) = az* which has the dimension of an energy [V] = [E], we can deduce

[a]=[E][L]"

I
5
&

no
=
[\
®
5
o
&
bl
I

a+2b=0
-2b-4c=0
Which we solve for exponents
4 2 1
a=-; b=—-=; c=-
3 3 3
2. The system Hamiltonian is
A h? 0? 4
H=—-——+ag
2m 0%

With the trial function

(I (.%') = 6_;’72

non other than a gaussian of standard deviation o, we will have to normalize energy by

+00
(o Vo) = [ V2 (@) do =0V
The energy of the system in state |¢),) is

h2

N o2
(wcr| H |wa> = _% <wa| % |¢U> ta (1/10| 'ﬁ4 |¢U)

with

”?
<¢a| % |’¢o> - _%

(¢a| i'4 W}U) = 205\/7_7

We find normalized energy

(Go| Hly) B2 3
(o | o) dmo? 477

We now look to minimize this energy in relation to o by solving

4
> =

OF,
=0
Oo
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To find

h2 1/6
Ovar =
(6ma)

3x 613 ( pha\'*

compatible with the dimensional analysis of question 1.

FEzercise 6 : Entanglement criteria(2 points)

1. Consider operator A : Hy » Hy. In the global hilbert space H, this operator becomes
A=A ®1y. We thus have

%
-Eoan (A )
=> piTr (1211,5;(:))

since Tr( 52 )) =1 for a density matrix. We have thus shown that (fl) is independant of
A(2)
P

2. The density matrix at pure states |{)guz) is built as

po = [Ycnz) (Yanzl
= - (1000) + [111)) ((000] + {111])

The density matrix for subsystems B and C is given by the partial traces of pg on the
Alice system

p={04]po|04) + (14| po|14)
_ 1.qo0><oo\+y11)<110
0

— o O O

1 0
00 0
210 0 0
00 0

( (()1) pA(()2) +ﬁ§1) ®ﬁ§2))

where p =10) (0| and [)(]) 1) (1].

3. For a separable density matrix pg, the definition of partial transposition is simply given
by

A“-Z*”(fwr (B.52)
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but the ﬁ,(f) are valid density matrices, that is:
~2)\T (2
() = 1(57)

(()") - ()"

(62)" en

(2
o)

)

thus ﬁgB is still a separable density matrix .

have the same eigenvalues

4. Like before, the pure state of A, B, C' and D is described by pg = [ts) (1s]. We compute

the partial trace relative to A

A

<+i (]100) (100| — [100) (111] - [111
1001 0 00
0000 0 0O
0000 0 0O

11001 0 00
“2lo 000 1 00
0000 0 0O
0000 0 00
0000 -100

p=1{0a]pol0a)+(1alpo|la)
1
= Z_l (|OOO) <OOO| + |OOO) (011| + |011> (000| + |011> (011|)

o O OO ~—

|
—_

_ o O

(100| + [111) (011))

To show that it is a mixed state, we compute the partial transpose relative to C. We see
that ﬁOT&] 011 = Poo1,010 and ﬁOTOCl 010 = Pooo,011 and same for the 2¢ diagonal blocks. Thus

[l iNolNellol

0

(= el elollal S o]

(= el oNoNoll e

[ el elNoell =Nl

OO OO OO

0

O O O O OO

-1
0

O O O O O

|
S

0

_ O O O oo oo

(B.53)

We can easily calculate the eigenvalues of this block-diagonal structure. For both blocks,
the secular equation is A2—1 = 0, which gives 2 pairs of eigenvalues A = £1. The matrix p’¢
thus has 2 negative eigenvalues, and therefore, it is not a valid density matrix. According
to the condition established earlier, we are in a case of a non-separable state and hence,

entangled.

B.3 2016 Exam

Exercise 7 : 3 coupled harmonic oscillators

150



APPENDIX B. SOLUTIONS Quantum Physics 11

l’ \\
3@------02

(i) The first term in H corresponds to hwN and thus commutes with N. For the second
term, it’s sufficient to observe that this term does not change the total number of
quanta since each term of the form d;&k destroys one quantum and creates another
(or gives zero if ng = 0). Therefore, the total number of quanta is conserved, and the
term must commute with N. For an explicit proof, let’s calculate:

[ax, aja,] + [al, afa,]ay,

lan, a] Jay + af [al, &)y,

a0 — ) a0 -
where we have used [a;, &L] =0, and [a;,ar] = 0. We notice that Zj<k(d}dk +€L};&j) =
Dtk d;r.&k, from which we have:

[N, g(a}ak +afa;)] o ; alax, afa]
<

If []\7 , H ] =0, we can diagonalize both operators in the same basis. Consequently, H
takes a block-diagonal form, where each block is defined in a subspace generated by
vectors {|ni,n2,n3)} with ny + no +ng = N and a fixed N.

(ii) Asstated in point 1, we can find 3 eigenstates of H by diagonalizing it in this subspace.
Thus, we have restricted the problem to a 3-dimensional space. Now, let’s calculate
the representation I' of (3, associated with this subspace. It is known from the
problem statement that I'(g), for g € Cs,, is a permutation. To find the characters,
it’s sufficient to determine a matrix per class of equivalence of Cs,.

o For E, we immediately have x(FE) = 3.
e For Cj, it permutes 1 - 2, 2 - 3, and 3 — 1, which gives us the matrix

01 0
I'(Cs)=] 0 0 1 (B.54)
10 0

so x(C3) = 0.
e For o, across the plane passing through 1, it has 1 - 1, 3 - 2, and 2 — 3, which
means x(o,) = 1.

Even without using the formula, we can see that x(g) = x( (¢)+x® (g), and therefore
I' =Ty @ T's. The eigenstates will have degeneracies of 1 and 2. The eigenstate
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(iii)

associated with I'; is the totally symmetric state, so it must be

) = % (1100) + [010) + [001)) (B.55)

We can immediately verify that H [11) = Ey[¢) with E; = hw - 2J. We can now
write two states orthogonal to |i7), for example

ng) = % (1100) + [010) + 3[001)) (B.56)

with |a|?+|B]? = 1. Orthogonality with [1/1) implies a+3+1 = 0. These two conditions
are satisfied by the cube roots of unity, and then

s T
o = 6i21§

B _ e?Qi%

We can verify that these are eigenstates of H; indeed, H [t23) = Ea3
E2’3 =hw+J.

The six states are [200), [020), [002),[110),]101),]011). Let’s calculate, as before, the
characters of the representation I' of dimension six defined in this subspace. For the
identity, it’s straightforward, xy(FE) = 6. Since C5 maps each state to a different state,
x(C3) = 0. For the same o, as before, we have:

1/123) With

020) < |002) 1110) < |101) (B.57)

but [200) and |011) stay in their place. So, the matrix will have two "1" values on
the diagonal, and x(o,) = 2. Again, without necessarily using the formula, x(g) =

2xM(g) +2x3)(g), so:
I'=2I, @2l (B.58)

There will be four distinct energy levels, two of which are non-degenerate, and two
others are doubly degenerate.
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FEzxercise 8 : Entanglement Entropy

(i) For a diagonal matrix, we have:

In () = (ln(()x) 1n(10- m)) (B.59)

and then
x 0 In () 0
S(x):Tr[(O 1—:6)( 0 ln(l—x))]
=—[zln(z)+(1-2)In(1-2x)]

We can use the identity lin(l)xln(x) = lim ye? =0 to conclude that S(0) = S(1) = 0.
r— T——00

Now, let’s calculate the derivative of S with respect to x, which we can easily find:

dS(z) In(1-x)
dz x

(B.60)

Then:

e Forx=05,(1-2)/z=1,and S"(z) =0
o For <05, (1-2z)/z>1,and S"(z) >0
e Forz>05, (1-2)/z<1,and S'(z) <0
So, necessarily, S(z) reaches a maximum at x = 0.5, and S(0.5) = In(2). By making

the variable change 1-x — y, we can also deduce that S(z) is symmetric with respect
to x =0.5.

In(2)f
0.6}

0.0}

0.0 0.5 1.0
X

Figure B.1: Variation of entropy as a function of the parameter x

For a pure state, we need to verify Tr(p?) = 2% + (1 - 2)? = 1, which is achieved for
z=0or z =1, and thus, Spure(2) = S(0) = S(1) = 0. The case S(0.5) =In(2) = Smax
corresponds to a completely mixed state associated with maximum entropy. So, we
can interpret S(x) as a measure of the degree of mixing for a given state.
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(ii) Using the Schmidt decomposition, we have:

(iii)

pa=Trp (1) {¢]) (B.61)
= 2 (bl ){(¥ly) (B.62)
= jik%i |ak ) (b51br ) (bk[bj) (ax] (B.63)
= 27 la;){a (B.64)
PB = é:A? [b;) {051 (B.65)

In their respective bases, we have:
R A0 R

Therefore, necessarily, S(pa) = S(pp) since S, involving a trace, does not depend
on the basis. We have S(pa) = S(\?), which is the function studied in point 1, as
A2 =1 - )} by definition.

o If |¢) is separable, we can write [1)) = |a) ® |b), which corresponds to A; = 1 and
A2 =0, 80 S(pa) =S(pp) =0. * If |¢) is maximally entangled, then there exist
2 bases for which [¢) = (Ja1) ® |b1) + |a2) ® |b2))/2, and thus, S(pa) = S(pB) =
In(2) = Smax-

Given the shape of S(x) and the results of points 2 and 3, we can propose that
S(pa) = S(pp) is a continuous measure of the entanglement present in [¢)). By
measuring the entropy of one of the 2 subsystems, we can deduce the degree of
entanglement between A and B wherein the terminology entanglement entropy.
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Exercise 9 : Hydrogen Atom in a Cubic Potential =~ We can express the potential in
spherical coordinates as follows:

V(r) = 3 sin*(0) cos(8) cos(¢) sin(¢) (B.67)
= %r?’ sin?(0) cos(f) sin(2¢) (B.68)
= %7“3 sin?(0) cos(0) (exp 2ip — exp —2i¢) (B.69)
Now, let’s express the potential as a sum of spherical tensors:
VS Y e (B.70)
k=0 g=—k

We know that the relation [Lz, Tq(k)] |n,l,m) = thq(k) In, 1, m) is valid for any state |n, 1, m).

In particular, if we evaluate it for |n,l,0), we obtain that LZTq(k) = thq(k). Let’s evaluate

L,V:
L0 (1 3 .2 . .
L,V = _Zh0_¢ (4—r sin“(0) cos(0) (exp2i¢ — exp —2z¢)) (B.71)
i
= —%7’3 sin?(0) cos(@)(,% (exp2i¢ — exp —2i¢) (B.72)
= —%7‘3 sin?(6) cos(0)2 (2 exp 2i¢p — (=2) exp —2i¢) (B.73)
= 2he o T = 2hey, _oTH) (B.74)

1
where we defined the coefficients c .o = F=7°sin?(0) cos(¢). We see that V is a linear

combination of spherical tensors with ¢ = +2. The value of k is not important for this
problem, but we know that k > 2.

According to the Wigner-Eckart theorem, only the matrix elements (n/,I’,m’|V |n,l,m)
with Am =m’ —m = ¢ = +2 can be nonzero.

(i) For the state |1s) =|1,1,0), the perturbation will be zero because Am = 0.

(ii) For the four states 2s and 2p, we need to apply degenerate perturbation theory. We
need to calculate the matrix in the subspace generated by |2,1,0), |2,2,-1), |2,2,0),
and |2,2,1). However, the same argument tells us that the only non-zero matrix
elements are those between the states |2,2,-1) and |2,2, 1) because these are the only
cases where Am = +2. However, these elements are zero due to parity. In fact, both
V and ¢(r) = (r| 2,2,+1) are odd. So here too, the energy correction is zero.

Note that the parity argument also applies to the first case. However, relying solely on
this argument might lead to the erroneous conclusion that a transition is possible between
the states |2,1,0) and |2,2,m), which have different parities.

B.4 2017 exam

Ezercise 10 : 2-D perturbed harmonic oscillator — Since operators @, and @, transform,
under operators of Dy, like z and y, we will start by figuring out the transformation laws for z
and y. For the character computation, we only need to study one operation per conjugacy class
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Ll y
E Yy
Cy Yy -
Co || -z -y
Cy -z y
Cg y

Table B.1: The x and y transformation as funciton of elements of group Dj.

Associated 2 x 2 matrices

1 0 (0 -1} (-1 O -1 0\ (0 1
o )6 S ) o7
And the character of each matrix is given by

X =2,0,-2,0,0, (B.76)

Respectively. We immediately see that this coincides with the character of irreducible represen-
tation I's of dimension 2.

1. Since @, and @, transform like = and y, |1,0) = @, 10,0) and |0,1) = @, |0,0) also transform
like x and y. These two states thus generate the irreducible representation I's of the
symmetry group of the Hamiltonian.

The degeneracy is therefore necessary and cannot be removed by the perturbation V (x,y).
2. We proceed in the same manner and determine the transformation laws of 2, zy, and y?,
which will also be those of [2,0), [1,1), and |0, 2).

We observe from exercise 1.1. that the state |1,1) transforms like zy and generates on its
own an invariant subspace:

| E Ca & ¢ G
’xy‘:cy -y Yy —TY xy‘

Table B.2: xy transformation as function of the elements of group Dj.

The characters are given by
X = 17_1717_1717 (B77)
thus this state generates I'4.

The other 2 states act like 22 and 2 :

| |E Ci G Gy G
3;‘2 x2 y2 1,2 1,2 y2
y2 y2 m2 y2 y2 :L'2

Table B.3: The transformation of 22 and y? as function of groupe elements Dy.

We can deduce the character
x =2,0,2,2,0. (B.78)
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Without even applying the formula for decomposition, we see that this character corre-
sponds to the one of I'y & I's.

We conclude that the 3-dimensional space generated by |2,0), |1,1), and |0, 2) decomposes
into three invariant subspaces corresponding to I'y @ I's & [',.

Hence, there is no necessary degeneracy, and in general, the degeneracy will be lifted by
V(z,y).

3. Similar to the previous exercise, we easily observe that {|3,0),[0,3)} and {|2,1),[1,2)}
are two invariant subspaces (23 can transform to +z3 or +¢® but not to 2%y or xy?, and
vice-versa). They generate two 2-dimensional representations, I' and T".

Thus, we obtain

y | B Ci G c, C,

PR % R B
7 P R S " P
1’23/ 3323/ _ny —x2y .Z'Qy y2$
yz.’lf y2$ .’E2y —yQCC —y2x $2y

Table B.4: Transformation of 23, y3, 2%y, y%x as function of elements of group Dj.

The characters associated with the two representations I' and I are

x(I') =2,0,-2,0,0 = I5x(I) =2,0,-2,0,0 —1TI; (B.79)

The 4-dimensional space therefore decomposes into two irreducible subspaces associated
with I's @ I's.

The perturbation will thus partially lift the degeneracy, and two energy levels doubly
degenerate will result from the perturbation V' (x,y).

FExercise 11 : Purification of density matrix
1. We must check that

(i) Tr(pa) =1,
(ii) pa=pl,
(iii) pa is positive.
Verifying these 3 conditions :

(i) Te(pa) = 1(5+3) =1
(ii) Being symmetric, we have py = pi‘.
(iii) The matrix is positive if all eigenvalues are > 0.

We find that
b-2)(3-2)-3=0

= 22-8r+12=0
= r=4+V16-12
=2,6

(B.80)
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i

2. Generally a density matrix can be expressed diagonally by

Thus

O ol

) (B.81)

ol O

is positive

pa = 2 pjlj){j|, where {|j)} form a basis. We can always define a second subsystem B
J

identical, with same basis {|k)}.

By construction, a pure state always has property p4 = Trp (|)(¢)]) es

¥)= YVl el). (B.82)

Indeed,

Tra (W)l = 221 (z}; voipr (L) ® 1)) ((kl © <k|)) k)
s

= > /pypr 1) (Kl (117) (kD)
Lok (B.83)

> /Dipk 1) (k] 6150k

l7j7k

= Zl:pz (1] 0

In our case, we will find the pure states of py :

e 6th eigenvalue :

(5 96
= (x+ \/gy = 6x
B.85
., (B.85)
y=1
Norm : 3y? +y?=1 = {x:Q\/Tg
e second eigenvalue :
(5 906
= (r+ \/gy =2z
B.87
DR (B.87)
=1
Norm : 22 +322=1 = { :fﬁ
)

The state in question is thus

i) = \/§|¢1)®|¢1>+\/§|@2>®|¢2), (B.88)
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In which
o)=L 2,
o) = 2= L.
Finally, we obtain
0=22 (L3 (L 310)
3 (3m-20)e (3102 1)

:é [BV3+1) [+4)+ (3= V3)[+=)+ 3= V3) [=+) + (3+V3) |--)].

3. This state is not unique. See form example that

[4) = \/§ 1) ® |¢2>+\/§ [p2) ®1e1)

gives the same matrix if we take partial trace relative to B :

)= (L iy 3190 o (31 21

3 (5m-20)e (L 30)

= [BVB+ 1))~ (BVB- s+ (VB-3) |4+ (34 VE) -],

Exercise 12 : Perturbed Harmonic Oscillator

(B.89)

(B.90)

(B.91)

(B.92)

1. We can directly use the formula seen in the course for a constant perturbation V' that is

turned on at ¢t = 0:

An|V[0)?  , (nwt
0=n = Than22 ( 2 )

(B.93)

Since V' = hy(a? + af?), it is impossible to create two quanta from the state |0). So, the

only possible final state at the 15 order of perturbation is the state n = 2.

In the limit ¢ - +o00, we have

Pyo :%té(%w -0)[(2|V |0)?

:O. due to the Dirac delta

(B.94)

Therefore, in this limit, the 15¢ order theory predicts that the system will be in the ground

state of Ho, |0).
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2. In part 1, we have seen that the only state directly connected to |0) by Vis 12).

Since the variational principle is based on the calculation of the matrix element (0' ‘ (I:IO + V) |O'>,
we only need to include the state |2) in the variational ansatz:

0" =10} + |2). (B.95)

This state is not normalized, which needs to be taken into account later. We will minimize
the expression of the energy:

(0] (o + V') |0")

B(a) - - (B.96)

Hy|0') =Hy [0) + oHy [2) (B.97)
=2hwa|2), ‘

V10') =hry(a® +a)(0) + a [2)) (B.98)

=/2hya |0) + V2hy [2) + V12hya |4) .

The last component is proportional to |4) and does not play any role in the matrix element
and can be neglected.

ﬁh’ya + ﬂh'ya + 2hwa?

1+a?2
B.99
B 2\/§h’ya + 2hwa? ( )

1+a2

E(a) =

Let us look for extremal values

dE _2\/§h'y + dhwa ~ 2a(2\/§h7a + 2hwa?)

do 1+a? (1+a2)?

B.100
B ~2V2hya? + dhwa + 2/ 2hy ( )
- (1+a?)? '
The condition % =0 can be translated by:
V2ya? = 2wa - /27 =0
= a’-v2%a-1=0

v (B.101)

w 2

o=
V2y oV 292

In the limit v < w,
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d + d 1+2ﬂy2
o =— _— _—
V27 V2y w?
2
L w w ~
SER (5102
W, 7
:{\/§7+\/§w.
_ 1l
V2w

Following the suggestion, it is clear that the solution that minimizes F(«) is a ~ —%%,

so |0") =10) - %% |2), and

1y 7 7t

We can neglect the denominator since ﬁ ~1-a?, ad the term in o will dominate the
correction in order superior to a.

We find that min (E(«)) < 0, which is the unperturbed energy.

. The variational approach provides an approximate result that includes all orders of per-
turbation in V. Thus, we observe that |0") # |0).

In the first point, we described the exam same physical situation in the limit ¢ - +o0, but
the theory at 15% order predicts that the fundamental states stays that of Hy, that is |0).

B.5 2018 exam

FExercise 13 : 2 sites sing model with transverse field

1. We have

A

_ AZAZ AT AT
H =-J6165 — ho{ — hoy

Expressed in basis {|--),|+-),|-+),|++)}, we get

-1 00 0 0100 0010 -J -h -h 0
A 0 10 0 1000 00 01 -h J 0 -h
H‘_Jo 0 1 0_h0001_h1000_—h 0 J -h

0 0 0 -1 0010 0100 0 -h -h -J

2. With ansatz

o) =|--)+a|+-)+a|-+)+|++), aeR
we get,
1 -J - 2ha
(To| H|To)= (1 @ a 1)H|Y|=(1 a a 1) Ja=2h | o 1 oha)+2(Ja’~2ha)
a Ja -2h
1 -J - 2h«a
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and
(ol Wo) =2(1 +0a”)
thus R ,
Yol H |W —4ha -
E(a):< ol H| 0>:Ja hoa-J
(Wo|Wo) 1+a?
we derive
dE(a) 2Ja-4h 2a(Jo® —4ha-J) 4ha® +4Jo - 4h
doe  1+a2 (1+a?2)? - (1+a?2)?
We then have JE
— =0=>ha’+Ja-h=0
da
deducing «:
-J /J2 h)2
o= - 2h+(8) =-B+\/B2+1
with 8 = 2.

We then compute o

2 =B2F2BVB2+1+B82+1=282F28/B2+1+1

replacing the new expression in F(«)

(o) - 2J0° % 2JB\/B2 + 1+ +4hB54hy/B2+1-J _2J8(BF /B2 +1) +4h(B7 /B> +1)

2(B2FB/B2+1+1) 2\/B2+1(\/B%2+1FP)
For “-”, we have 5
JB +2h
B(a)=-
()=
and for “+” 78+ 20
+
E =
()=

Since J, h > 0, the fundamental state corresponds to a = -3 ++/3% + 1.
3. We have

J2

2=+ 2h 2 4 442

w20 SN e - g
(;TQ)QH V2 + 4h?

E(a)=-

4. The exact fundamental state is given by

-J -h -h O 1 -J - 2hay,
-h J 0 -hl|lan| | Jom-—-2h

-h 0 J =hllaml|l | Jay, -2h
0 -h -h -J 1 -J = 2hay,

We can then compute

J2
(2n)?
=-J+J-+/J?+(2h)?

+1

J
-J - 2hayy, = -J - 2h(——
« ( 2h+
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and

J? g
T —2h = - + =~/ T2+ (2h)2 - 2h
@ on Tap VT (2h)

24 /T E (2R)2 -

TP+ (2h)2 - J\/J? + (2h)?
B 2h

T (L O

2h

Thus H|Wo) = Ey|¥). For the most general state,
al-=)+b|-+)+c|+=) + d|++)

ITt is evident that we must have b = ¢ and a = d since H is even under exchange 1 < 2. A
coefficient is found by normalization, and all that is left is one free parameter.

Ezercise 14 : Entanglement entropy in the transverse Ising model

Going from
|==) + am [+=) + am |[-+) + |[++)

[0 (am)) = NI ;

and
S=Tr(p1(Inp1)) p1 = Tra(p)
1. we know that

1

I "

|?/)0>-N o

1

So

1l o o 1
1 la o2 o? «
o) twol = 5 [ & 2 % O
1l o o 1

2. We calculate

3. We now have
S =Tr[p11n(p1)]
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if p1 X;pj17)(jl, then S =3 ;n;Inn;. We can calculate the eigenvalues:

1 9 o?
G - Gy
1 B «
5 1T a2
So
= — F &
n 1+a2
which we write
~ (04+1)2 B (04—1)2

=51 +a?)? ™ 21+ a2

We thus have

Inn = 2In[a+ 1] - In[2(1 + o?)]
Inny = 2In[a - 1] - In[2(1 + a?)]

We can then calculate S:

(a+1)2 (a+1)? 9 (a—1)2 (a—1)2 9
=—1 1] - ———-1n[2(1 —1 -1]- —1n[2(1
S= g e+l 2(1 + a?) n[2(1+ )]+ g nfa—1] 2(1 + a2) n[2(1+a%)]
4. we wrote
a——i+ J—2+1
2h 4h2
a%—>00
a->0=m=5, =

S:llnl+lln1:—ln2
2 2 2 2

b %—>Owehave\/1+x2%1+%+---anda—>1

771:1, 772:0:>S=0

When the interaction tends to infinity, the system is entirely entangled. When the interaction
is null, the state becomes separable.

Exercise 15 : Vibration modes of a triangular molecule
In the symmetry group Dgp, we have the following elements:

o Identity
e Both Cj rotations around 2
e All 3 (5 rotations around the 3-axis linking the vertex to the center of the opposite edges.

e The mirror oy,
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e S3: C3 and oy,
° O',U
Each atom can move in R3, we thus have dim(T") = 9

1. Let us calculate the characters of I' We start by determining the representation associated
to the permutation of the 3 vertex, I';:

o T'y(e)=13= xy(e) =3 avec

-

for the triangle

o Rotations C3

00 1
T, (Cs) (1 0 o)
DL (@) =0
T,(C3h) =(o 0 1)
100
¢ Rotations Cy
100
r,(c?) =[o o 1
010
00 1
L(C) =10 1 0f txu(Ce)=1
100
010
T, () =[1 0 0
00 1

o Mirror op: T'y(op) = 13 = xp(op) =3

e Improper rotations Ss.

S = O

0 1
FU(Uh)FU(C:;):ﬂ( 0 0):FG(C3):>XU(S3):XU(C3):O
1 0
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* Oy Fv(aéi)) = Fv(CQ(i)) = Xv(géi)) = Xv(02(i))
And determine the representations generated by displacement vector r = (z,y, 2).

o I'h(e)=1g
e Rotations C3

1 _V3
2 2
L) =4 -1 o] x(@)=0
0 0 1
1 V3
-3 3 0
Fr(cs_l): —@ —% 0
0 0 1
« Rotations Cy
1 V3
nef =8 1o
ri&2 T T2
0o 0 -1

e Mirror oy,

Ly(on) = (

S O =
S = O
|

HOO
N —

L4 53:
10 0\[-1 - o) (-1 8 o
[.(93) =T,(0),T(C3) =10 1 0 § -1 oo]= § -1
00 1/to o0 1 0 0 -1
1 V3 0
y_|7& 2
e I'n(ow’) = 73 -5 0
0 0 1
r=r,erl,

Te(D, ®0y) = Y0 > (in] ® (0| T ® Ty i) ® i)

iy i

= 2 {in| Tr lir) 3 (o] Ty Jiv) = Tr(Lr) - Tr(Ty)

v

E | 2C3 | 3Cy | oy | 253 | 30,
ry|3| O 1 3 0 1
r.13] 0 -1 |11 |-211
r 19/ 0 -1 13 0 1

2. We can then determine the decomposition of I' in irreducible representations.

L= b0 4+ 5,0 @ 4 psT®) 4 0@ 4 1) 4 ()
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center of mass translation: I'®), 7).

E 203 302 Op 253 3Uv
r 9/ 0 |-1]3] 01
or® 8| -1]-212|-11]0
er®) 6| 0| -2]01] 010
er® 50 -1 -1]1]11]-1
er®) 3/ 0| -1]3]01]-1
r®+r@ (3] 0 [ -1[3] 0 -1

we then get
r=rer®gaor® er® ¢r®

Alternatively, we can use equation

13,
by = N ZnMXa(CM)X(C,U«)
o

with N =12, and find

bi=1 by=1 b3=2 by=0 bs=1 bsg=1
3. The basis functions associated with the center of mass are r = (x,y,2). We can see from

the table that the corresponding representations are I'®) and I'(®).

4. Rigid rotations transform like the angular momentum L = r x p, i.e., under rotations R,
Ry, R.. Thus, the associated representations are ' and 1),

5. T and T'®) remain. Therefore, there exists a non-degenerate mode associated with r
and two degenerate modes associated with re),

B.6 2019 Exam

FEzercise 16 : Harmonic oscillator in external field (15/50 points)

1. The states with N =1 are |a) = [0,1) and |b) = |1,0). Therefore, the question is whether
the two-dimensional space generated by these states corresponds to an irreducible repre-
sentation of dimension 2 of Dy or to two irreducible representations of dimension 1. We
have

(zla) = do(x)d1(y)
(z|b) = ¢1(z)Po(y)

with

on(e) - (1) (- ) s (-50)
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mw

where X = T:r So
mw le meEQ mwa
do(w) = (E) eXp(_ o )= Coexp (_ oh )
1 2 2 2
b1(z) = % (%)4 (X - aix) (exp (—XT)) S Ci(Xe S s Xe )

2mw

h

()

2

1
2 _mwz
xTe 2h

mw\?  [2mw il 9 9
= du(@)on() = (T )T/ Trwe 2 (@ +4)

Lo _mw
B1@n() = (T) T ae (@)

Yet (22 +42) is D5 invariant. Furthermore, (z,y) transforms under Ey, which is a repre-

sentation of dimension 2. Degeneracy

is thus not lifted.

Alternative method Representation on (x,y)

 Representation on {(1,0),(0,1)}

Ty (E) =
Ta2(C5) =
L(Cs') =
T2(CF) =

Io(Cy) =

o = Representation on 9 (x,y):

10

0 )

cos(27/5 =) —sin(27r/5))
sin(27/5)  cos(27/5)
cos(27/5) sin(27r/5))
—sin(27/5) cos(27/5)
cos(4m/5) —sin(47r/5))
sin(47/5)  cos(4m/5)
-1 0

: 1)

D (B)6(a,y) = $(Ta(E) (y)> —(a,y)

T(Cs)d(a,y) = (T2(C5t

)(5)) =(zcosa+ysina,—zsina + ycos o)

L' (Cs)(x,y) = Y(x cos(2ar) + ysin(2ar), —asin(2a + y cos(2a) )

Ly (Co)Y(x,y) = Y(-x,y)

with « = 27/5.
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o In bais {|10),|01)} oc {ze P(#*+¥) ye-Bla*+*)},

Ly(E) = (1) (1))
L'4(C5) = COS*(OJ) cos?a)) > Zeosa
Iy (C3) = COS?O[) cosé?oz)) = 2cos(2a)
-1y =E

2. For N =2, we have {|02),]11),]20)} and

(- 2 exon(5) - (oo () oo () (-5
{oven( ) ] )

So we have
022 0()oa(w) = = (2) (F50 - 1) exn (- 0% 40
1) ¢1<x>¢1<y>-7(%)3:@@@(—% Lay?)
20): a()oo(w) = () (F et - 1) e (G )

Since x? + 42 transforms under A4 = |20) +|02) is distinct from [11) and [20) - |02). (22 -
y?, xy) transform together under E,. The degeneracy is only partially lifted; {|11),]20) -
|02)} belong to the same representation, which has 1 non-degenerate state and 2 degenerate
states.

Alternative method N.B: This time the functions {(MxQ—l)e‘ﬁ(xQJ’yQ), aye P, (py*~
1)e™? (x2+y2)} are not orthogonal. Therefore, we need to start by choosing an appropriate
basis. For example:

{(22 + y2)e P ) gye B H?) (42 _ 2y B+
Indeed,

(2* +y)(a® —y?) =2t~y
= / dzdy(2? +1?)e PE ) (22 - ) PE*+7) —
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In this basis...

1 00
ry(E)=[0 1 0

0 01

1 * *
I'¢(Cs)=|* 2cos(a) *

* * 2cos(a)

1 * *
T(C3)=|* cos(a) *

* * cos(a)

1 % =
Ff(Cé): * -1 =

* % ]

knowing that
zy — (cos?(a) —sin?(a))zy = cos(20)xy
22—y > (cos?(a) —sin?(a))(2? - 4)
zy — (cos?(2a) - sin?(2a)))zy = cos(4a)zy

3. For states with N =3, we have {|03),]12),|21),|30)} and

(X - i) ((4)(2 - 2) exp (—X—2

ix )
= [(4X3 -2X)exp (—X;) - {8Xexp (——2

2 2
= (8X3—4X—8X)exp(—X7) 4(2X3—3X)exp(—X7)

); ) — (4X? - 2) Xexp (—X;)}]

)

<= (5 ) (25 o
So

03) = on()eau) = = (2 w2500 - Sexn (- 47))

12) = 61 (2)a(v) = () (255202 - Dexp (520 + o))

21) = 6a(2)61 (1) = ()2 a? - Dexp (520 + o)

300 = an(e)eso) = = () v @00 - oo (5 +47))

At first perturbation order:

%|21)—|03)0<y(3562—y2)
_%|12>+|30)o<x(1:2—3y2)

1(3 1(3
:{5(%|21>—|03>),§(ﬁll2>+l30>)}
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transforms under F» and are degenerate. then, orthogonal vectors are:
1 3 2mw o ) ( mw o )
—1]21)+ — |03 —az"-1)+yl2—y° -3
3 (s Zi0m) e (B2 1) (22
2
(2 )
h
1 3 2
—|[12) —30) | o< a:( e
2 V3
But, {z(2%y?),y(2? +y*)} and {z,y} transform under F;. So both states are degenerate.
The degeneracy is thus partially lifted towards 2 pairs of states.

(% +2?%) - 4)

Iternative method Again, we start by choosing an orthogonal basis without which we
couldn’t take the trace. We have:

{ny® = 3y, pay® - @, pya® -y, pa® - 3z}

which is not orthongonal, so we choose

{y(32” - y*), x(a® = 3y%), y(u(a® + y*) = 4), x(u(y® + %) - 4)}

Then:
1 0 00
0100
FriE)=1p 0 1 0
0 0 01
cos(2w) * * *
~ * cos(2a) * *
T4(Cs) = * * cos(a) *
* * * cos(a)
cos(a) * * *
2y * cos(a) * *
Ty(C5) = * * cos(2a) *
* * * cos(2a)
We then get
Fj = E1 @ Eg

degeneracy is partially lifted.

FEzercise 17 : Entropy of a quantum system (15/50 points)

1. We have
S=-Tr[plnp]

it 5= X,y 17)(i] then
S=- an Inn;
J
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and
p=)l=n=1
and so
S=-1In1=0
2. we calculate
d d d
d—f = —Tr[d—flnmﬁ-ﬁ—l : d—f] = —Tr[-i[H,S]Inp-i[H,p]]

but Tr[-[H,p]] =0
=i-Tr[Hplnp]-iTr[pHInp]=iTr[Hplnp]-iTr[Hlnpp] =0
where equality is due to the cyclic property of the trace.

3. In matrix form we have

we substitute in the equation to obtain

ap _ 0 —(7/2 +2iw) p12
dt  \-(7/2-2iw)piy 0
solving the differential equation we get
—t(y/2+2iw)
- P11 p12¢€
t) = .
p( ) (pi2€—t(’y/2—21w) P22 )

4. For S =-%;n;Inn; we can diagonalize p(t)

o L [E+Q 0
0-3(%% o)
Y =p11+p22

Q= \/(P11 — p22)2 +4|p1af* - et

for
o 111
CORUTURET
we have py
. 1+e 7= 0
- (7 )
then 1 1 1 |
S(t) = —~ (1472t In [—(1 . e—v/%] _ ety [—(1 - e—v/”]
2 2 2 2
for t - oo,
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Ezercise 18 : Perturbed harmonic oscillator (20/50 points)

1. Hamiltonian is s o
h* d 1

=+ —mw2m2e>‘x2
2m dz? 2

with A > 0. We can write this hamiltonian like that of a harmonic oscillator with a

perturbation.
H = H() + V(l’)
-h? d? 1
Hy== — — + —mw’a?
2m dz? 2
V(x) = —mw23:2( A _ 1)
The fundamental state of the harmonic oscillator is

o= (2)

h
with g = hw with eigenenergy Fy = ;u

At 1°t order, perturbation theory gives:
=Ey+AE, AE = (y|V |[¢)

E
(V| V) = \/7 mw [dx e 1)6_’&62

but foo dze B = \/f and so
0o ﬁ
d o0
el -Bz? -Bz? _
dﬁ/d:ve /d;m: e dﬁ\/7 253/2

SO o
fd$$2€_6x2= \/7_T
2B3/2

Then
N 1 I mw? 6] 1] mw? B hw
(V| V]y)= \/>2mw2 [(ﬂ NEE 53/2] Ty [\/ (B-\)3 E] T4 V(B3 4

We use now A < 3 in the series expansion.

VAGESY A)S \l "_3 ﬁ FA %<“%)

SO
W2 2
15} hw hw ( 3hA ) hw  3R*°A
\% — v — 1+ —)-—=
WIV )= V (B-A)3 4 2\ o 4 8m
and )
E-p-Ay =@, 30
2 8m
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3. Variational theory: [ is the variational parameter, suppose A < [ and A < % We
already know (| V' [1) as function of 3. Calculate the average kinetic energy on sur ¢ ().

(2 e

dx T
2 i g
5h-(2) e

WITI) - \[ G f do(Ba? - 1)e
=—% (\/Eﬁ2fdxx eBmZ—B)
( \fﬁﬂ \/; )

i( ).

__2m ) 4m

2

and

T T\ ey
h? mw? 1 ( 3)\)
+—— |1+ =
4m 4 g 273
dE(B) A mw®l 3mw® A

4m 432 3
232
d—E:O:hﬁ :(1+Q)
dp mw? B
hp 1+Q%1+Q
mw 15} 273
h 3\
—B2=8-""=90
mw 2
Lxy/1+ 802
p= 2h
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Only the solution with “+” is valid, as 8> 0

b=t o\ o) TR T
2 2 1
E(ﬁ)_h—“HﬂA ma (1 3A)

mw mw( 3h>\) mw 3\
1+—|=

sm” 4 me 4 32 21
hw 3h2)\ hw 1 ( 3R\ )
=—+ 1+
4 8m 4 1 +oe 2mw

[

4 " 4 2mw
_hw  3RPA 9RTN?

=— +
2 8m  16m3w

hw hw( 3h)\)( Sh)\) 3h2\
1- 1+ +

2mw 8m

which is a little better than the perturbation at first order.

B.7 2015 Midterm

FEzercise 19 : Confined quantum stark effect (2.5 points)

1. The total potential is an infinit barrier with an inclined bottom with positive gradient
F=-eFE (E<0).
2. The Hamiltonian of the perturbed system is:
. PP
H=—+V(2)+F2 (B.104)
2m
In the case where F' =0 the eigenenergies of the confined electron are
222
o mh
En—n W,n>0 (B105)

and the corresponding wavefunctions are

nm

2
on () = 7 cos (T:c), if n is odd

=y gon (7). o0
xIr) = — S| —I 1I N 1S even
P L L)

3. In the case where F' # 0, the energy correction to the fundamental state is the average
value on the non perturbed states

+L/2 +L/2
E(l) f o] () Frpy (z) dx = oA f xCoS (z:c) dx (B.106)
-L/2 -L/2

Directly noting that z + 2 cos?(x) is odd or by integrating by parts, we find Efl) =0.
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4. The energy corrections for the first 2 excited states are given by

+L/2

2F 2
Eél) = A f zsin? (%x) dzx
-L/2
o +L/2 3
Ezgl) = f zcos? (—Wx) dx
L L
-L/2

and involve odd integrands, which is the case for any n, hence we simply have E7(L1) =0 for
all n.

. The energy correction E%z) for the ground state at order 2 involves non-zero matrix ele-
ments

+L/2

2F j
VU:T /xsin(‘%x)cos(%x)c&

~LJ2

only if j is even. Indeed, in cases where j is odd, the elements are zero due to parity. If
we only consider the coupling with the first excited level, i.e., j = 2, the correction to the
ground state is simply

@ _ VoV
By ==t B.107
1 Ev2 _ El ( )
with
16
Vo= —FL (B.108)
972

using the identity sin(x)cos(z) = sin(2z)/2 and integrating by parts xsin(2z). Thus,
finally,
256 F2L?
2437%  Fy

E® - (B.109)

. The wave function of the ground state becomes asymmetric and localizes where the total
potential is weakest.

FEzercise 20 : Particles interacting in a potential (2.5 points)

1. The 3 possible states are

Y1 (21, 22) = 91 (21) 1 (72)
o (21,22) = [1 (1) @2 (22) + o1 (22) 2 (21)] V2
V3 (21, 22) = 2 (71) P2 (22)

2. 1st order corrections on the energies are

AES = (] Ving [15) (B.110)
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Using the definition of the delta function

AE{”:vOfw% (21) da:

Vi
AEQ(I) = 70/1!)% (z1) ¢35 (21) da
AE?E”:VOfwg (1) da:

3. ONly one possible state in that case

U1 (21,22) = [p1 (21) 92 (22) — 1 (22) 2 (21)] /V2 (B.111)

In this case the energy correction

AED = f [0 (1) 93 (1) = T (1) @5 (21) ] dz1 = 0 (B.112)

is zero. This is predictable as long as the potentials act when particles are at the same
position, impossible when the wavefunction is odd.

FEzercise 21 : Quantum information (1 point)

To determine if the operating modes can be distinguished, it is necessary to find an observable
quantity that, when measured, yields different average values for the various operating modes.
A necessary condition for being able to distinguish two operating modes is that the associated
density matrices are different. Indeed, if the two density matrices coincide (in the same basis),
then the measurement of any observable will yield the same average values in both cases. Let’s
calculate p4, pp, and pc.

PA—%(WJP Hpl + [1p) <¢f|)
- 5 ()0l + 11D
110
PA:§( 0 1 )
i = 5 (10n) Wl 1) (1]
= ()01 + [1){1] + 10){1] +[1)0
+ 0)0] +[1){1] - 0){1] = 1) (0]
- 5 ()0l + (1)

PB =

O =
_ O
N —

DO | =
—_—
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po = 5 (p)(wnl + )W)
0)01+ 3 (0)+ L) (t1-i1))

10){0] + _|1><1|_Z|0><1|+Z|1><0|

BYERE
Pe=3\ i 1

It is therefore impossible for Bob to distinguish A from B. He can, however, distinguish C from A
and B. To show this, it suffices to find the eigenvalues of p.. The simple solution to the eigenvalue
problem gives pc = (2 +1/2)/4 ~ 0.854, 0.146. Bob only needs to choose an observable quantity

that has the form
-1 0
oo=(3 1)

in the basis that diagonalizes po. Measuring such an observable on the mixture C will yield -1
about 85.4% of the time and +1 about 14.6% of the time. For the instructions A and B, the
measurement of O¢ will always have an average value of zero.

»blwwl»awl»—x
A

B.8 2016 midterm

FEzercise 22 : Impurity in a crystalline field (3 points)  Degenerate perturbation theory
tells us that the first-order correction in V is given by the diagonalization of the matrix:

MW =(3,2,m|V|[3,2,m') (B.113)

where |3,2, m) are the states of the 3d orbital. We can deduce the elgenvalues using group theory.
We know that V is invariant under all operations of Ty, in other words, [D(g),V]=0,,Vg € Ty.
If we decompose the subspace defined by the five states |3,2,m) into a direct sum of irreducible
invariant subspaces of Ty, we will have simplified the search for eigenvalues. Moreover, if each
'™ from Ty present in this decomposition appears with multiplicity one, we will have directly
diagonalized the problem.

1. The 3d states generate an irreducible representation D) of SO(3). This five-dimensional
representation is reducible under the T; group. Let’s calculate the character of D® for the
operations of Ty. Recall that all rotations by the same angle belong to the same equivalence
class. Therefore, we can always consider rotations around the £ axis, for which the matrices
D®)(a, 2) are diagonal:

expi2a
exp ia
D@ (q,2) = 1 (B.114)
exp —ta
exp —12a
Thus, the trace of D3 (a, 2) gives:
Tr(DP (e, 2)) = 2cos(2a) + 2 cos(a) + 1 (B.115)
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Therefore, the character of (5 is:

x(Co) = Te(DP (7, 2)) = 1 (B.116)
For Cs, we have:
x(C3) = Te(DP (27/3,2)) = -1 (B.117)
And for Cy:
X(Cy) = Tr(DP) (n/2,2)) = -1 (B.118)

Since the 3d orbitals are even under inversion, the matrix associated with inversion is the
identity, and therefore:

x(0q) = x(Inv-C2) = x(Cs) =1 (B.119)
x(S1) = x(Inv - Cy) = x(C4) = -1 (B.120)

The character table of D(®) under the operations of T} is:

| E | 8C5 | 3C, | 604 | 654
DO [5]-1] 1 ] 1]-1

(B.121)

Without even using the formula for decomposition, we can see, with the help of the char-
acter table of Ty, that:
X(D®) = x(T®) + (1) (B.122)

And therefore:
D@ —1®) 1) (B.123)

As the multiplicities are one, we are sure that the matrix V will be diagonal in the base
that corresponds to this decomposition, and the subspaces associated with '3 and TG
will be degenerate. Thus, the 3d levels split into two levels with degeneracy two and three,
respectively. Group theory does not tell us which level has the lowest energy. We have
two possibilities :

T F(3)

- -

LA F(S)

-

E'N £y

S—0) —T®

2. The dipole operator is proportional to r = (x,y, z). According to the character table, we
see that (x,y,z) generates the irreducible representation I'®) of T};. There is only one
transition to examine, that between the two degenerate levels that we have just found. We
must determine the selection rules for a matrix element of the form:

<F<3)| ® p(5>> (B.124)

We can decompose I'® @ T®) into a direct sum and check if T'®) appears.

| E | 8C3 | 3C; | 604 | 65, |
r®er® 6] 0| -2] 0] 0|

(B.125)

Again, without performing any calculation, we notice that X(F(3) @ I'®) = X(F(4)) +
x(I'®)), and thus I'® @ ) = 1) @ 7). Since both (F(B‘)‘F(E’) and ‘I‘(‘r’)) involve the
same irreducible representation, the transition is allowed.
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Ezercise 23 : Perturbed Harmonic Oscillator in 2-D (3 points)

1. Let’s start by calculating the first-order energy correction AEM by evaluating the per-
turbation V' on the non-perturbed eigenstate |¢go):

AEM = (10| V]tboo) (B.126)
= [ dedydd (2) 6F (4) Aay (B.127)
(B.128)

2
= )\[f dz¢g (z) x] (B.129)

Since ¢y is an even function, the integrand in (B.129) is an odd function, so AE(M = 0.
The second-order correction is given by:

AE® = % WOOW‘%mn)(gmnWWoo)
00 — &mn

(B.130)

m,n

It can be noticed that at least the term associated with m,n = 1 contributes a non-zero
term since:

R R 2
(Y11l V [ho0) = (ool V' [th11) = A[f dz1 () ¢o (fﬂ)ff] (B.131)

involves an even integrand. It can be shown that this term is, in fact, the only one
contributing to the correction. Indeed, since Z o al + @, non-zero matrix elements cannot
occur for m,n > 1.

2. The states [110) and |¢)g1) are degenerate with an energy of Eig = Fop; = €1 + ¢g. We
must develop an appropriate perturbation theory. Due to parity, we immediately have
(1!)11| |4 |¢00) = <1/)00| |4 |1!)11> =0. On the other hand, we have:

(1ol Von) =\ [ dadyod () 63 (v) 2y

=)\/al:U\/204:E2\/§6_0‘962[aly\/2043,/2\/§e_°‘y2
T T
2

Let /ax := z, then dx = dz/\/a, and we must now integrate

1
f dzaz’e ™ = NG f dzz%e ™ (B.132)
by parts to finally find
~ N A
(P10l V [vo1) = (o1| V |th1o) = % (B.133)
Thus, we have the perturbation matrix:
’ Vo) (w10l V [vor) 0 )2«
I :( (10| V / _ B.134
(o1 V [th10)  (vor|V [tho1) A2 0 ( )
Its eigenstates are
[th10) * |tho1)
= ) B.135
[¥s) 7 ( )
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and eigenvalues

AFE, = :l:i (B.136)
2

giving energy corrections. These perturbative correctiosn are of order 0 in V as expected
in degenerate pertubration theory.

B.9 2017 Midterm

Ezercise 24 : Attrictive 1-D potential always has a bound state (2 points)

1. we have

fdm[) (x)=1

fdxA2 —2xz? _

using —2\z? = -2

then

=A% /—=1
2\
a-(2)
T
2. here, we calculate
2 h2 d2 —>\$2

2
di2 e—)\$2 dx( I\ze -z )

= 20N 4 4p2g2e N

(W Tl =/ 2 ] dx2/\— ~2ha? \/ Azh ]dmz a2

Integrating by parts

2 | o0

+ifd:ce_2>‘w2
4\

—00

fd:mz —2a? _ 672)“%
T

L /T
_4>\ 2\
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Finally
A 2\ h?
(wIT|¢>=\/ ( 2)\\/ +A,/ )
h2
=—\
2m
3. We have
I(\) = (¢ V(ﬂﬁ )
\/ /d:):V(:U)e

= 2—)\ + I(A)

dI
Calculating —:
alculating N

dId()\)\) 2\/_\/7f dxV(z)e 2 \/7_/ dzV (z)(—2z )6_2)‘”3
I()\) \/7f dzV (x)(-2z )e‘”‘x

THe condition minimizing energy is simply given by

awlAw)
dX
w0 B2 dI(N)
—+———==0
2m dA
and

LI \/7fd V(@)(-202)e 2

and we can deduce an expression for I(\) as asked

h2
=2/ fde(x)2x2 oA
m

One can understand this expression as if we had inverted the relation A = A(/) with [
becoming the new variational parameter. In this case, the expression below is an implicit
equation for A(I). Let’s replace I(\) in (| H |¢):

2

(ol 1) = j—mA 1)

h2
=—— fde(x)2x2 2
2m

Since V(x) < 0 and A > 0, this expression is strictly less than zero. According to the
variational principle, the true ground state will have Ey < (¢| Hl¢), <0 O
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Ezercise 25 : Second order polynomial symmetry in R? (2 points)
Recall that D(R)¢(r) = (R 'r).

1. For a rotation around axis Z, we have

T — xCcos ¢+ ysin ¢

Yy = xsin ¢ + ycos ¢

So:

2?2 - 2% cos® ¢ + y? sin® ¢ + 2zy cos P sin ¢

y2 - 2% sin? ¢+ y2 cos? ¢ — 2xy cos ¢ sin ¢

2’2—>2’2

xy — —z? cos psing + :):y(cos2 ¢ — sin? o)+ y2 cos ¢ sin ¢
Tz —> xzZCOoSP+yzsing

Yz = —xzsin ¢ + Yz cos ¢

The matrix is then

2 2 0 -es 0 0
2 2 0 cs 0 0
. 0 0 1 0 0 0
D(2,¢) 2cs -2cs 0 2-s> 0 0
0 0 0 0 ¢ s
0 0 0 0 0 -s c

where ¢ = cos ¢ and s =sin¢. It is not unitary since 1); are not normalized.

2. We first need to calculate the characters associated with D. Since the character of D(7, ¢)
only depends on ¢ (For teh same ¢ all D(n,¢) are in the same class).

We can use the matrix obtained in 1. For n = 2.
x(¢) =3cos’> ¢ —sin® ¢ +2cosp + 1
=2cos?p—2sin?p+1+2cos¢p+1
=2c0s2¢p+2cos¢p +2

We now need to calculate the characters of the irreducible representations D) of SO(3).

recall that:
D(l)(ﬁ,(b) _ e—iqbva/h

We can continue using # = 2. For this choice, recall that
D(l)(é, ) = e~ i9Lz/h

which is diagonal in basis {|l,m)} of eingestates for the kinetic moment.

e 0 0O -« 0

0 eU-Dé o ...

DO (z,¢) = 3 ;
0 0 v e U
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and

XD (9) = (e + e70) 4 (/-1 4 o -19Y 4]
=2cos(lp) +2cos(l(-1)p) +---+1

We immediately recognize

x(#) = x(8) + x? ()

showin
° D=Dg¢D®

3. A linear combination that is invariant under all arbitrary rotation is
p(r) = 2% + 4% + 22

Since D intervenes only once in the decomposition of D, this function is the one we
were looking for.

4. Going again from the matrix calculated in point 1 to calculate the characters linked to the
3 classes of Cs,:

X (@) =2cos(2¢) +2cosp + 2

SO
X(E) =6
27
x(Cs) = x(eb = 3)
4 2
= 2COS(—7T) + 2cos(—7r) +2
3 3
1 -1
= (——)+2(—)+2:0
2 2
The o, operation is an improper rotation and we can no longer use the expressing above

for x(¢). Note that, out of the 3 operations, o, is the one that corresponds to the
transformation

Tr—> -
y—uy

z >z

For this transformation, we have

.%'2—>.%'2

y’ -y
22—>2’2
Y = —TY
rze —> —Iz2
Yz = yz
So
X(op)=1+1+1-1-1+1=2
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Finally
x:6,0,2
an, without using the equation for the decomposition using characters, we easily see that
X =2x2+2x3
So
D=2T"y & 2T

FEzercise 26 : harmonic oscillator under a pulsed perturbation (2 points)

1. The temporal evolution operator from the interaction point of view, at 1° order in V is

ot
Uj(t,to):f—%/dtlvf(tl)
to

.t
- f_%/dtleiﬁo(tl—to)/hV(tl)e—iﬁo(tl—to)/h
to

The probability we are looking for is then

ot = [(1] 01 (1, o) )]

t _ 2
[ dnesp (iEl . Eo gy, - to)) exp (- it ) (1] (a+ah)o)
to

T

2
€2 h

2T 2mw

where we have used (1] 7|0) = 0.

By - E_
accepting that tyg — —oo and neglecting the phase exp (i%tg) in the integral, which

will give 1, after the square module.

2
62

Por = f dte™te I
7 2mhw

where we have taken t - +o00, B — Eg = hw and a'|0) = [1).

We must now calculate the integral

Completing the square:
2 . W22 W22
— —wt =t" — 1wt — +
72 4 4
(t ,w7)2 w?r?
=l--i—] +
T 2 4
2 x® 2.2 ¢t wr\2
fexp - 5 —iwt :/dtexp - exp —(——z—)
K T 2
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Changing variables gives

t  wT
——i— =z

T 2

( ”)
Tlz+i— | =
Tdx = dt

So

P e2rr? o w22
-1 = X -
01 2mhw P 2

2. In the limit wr — 0, we have Py =0, and similarly in the limit wr — o

In the first case, the perturbation acts on a very short timeframe keeping the same am-
plitude, making the energy go to zero. In the second case, the perturbation becomes
quasi-stationary and we cannot change the energy of the system.

The duration 7, that maximizes Fy_1 is given by

2,2 2.2
2Texp(—w27— )—wQTgexp(—w T ):O

APy
==l wr? =2 Tm =

V2
dr w

3. To go from [0) to |n), one must apply n times al. This is only possible at perturbation
order n, since Vi oc (af + @)™ and so the perturbation has at least once (af)™.

B.10 2018 Midterm

FEzercise 27 : Degeneracy lifting in the presence of a field(3 points)
No correction

FEzercise 28 : Two fermions in a potential well(3 points)
No correction

B.11 2019 Midterm

FEzercise 29 : Four coupled Harmonic oscillators(3 points)
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No correction

FEzercise 30 : variational principle for two 1/2 spins (3 points)
No correction
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